In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.
Did you know that your browser is out of date? To get the best experience using our website we recommend that you upgrade to a newer version. Learn more.

Artificial intelligence identifies severe aortic stenosis from routine echocardiograms

AI-ENHANCED AS study presented in a Hot Line Session today at ESC Congress 2022

Echocardiography
e-Cardiology and Digital Health


Barcelona, Spain – 28 Aug 2022: A novel artificial intelligence (AI) algorithm uses routine echocardiograms to identify aortic stenosis patients at high risk of death who could benefit from treatment. The late breaking research is presented in a Hot Line session today at ESC Congress 2022.1

Aortic stenosis is the most common primary valve lesion requiring surgery or transcatheter intervention in Europe and North America.2 Prevalence is rapidly increasing due to ageing populations. Guidelines strongly advise early intervention in all symptomatic patients with severe aortic stenosis due to the dismal prognosis. Approximately 50% of untreated patients with aortic stenosis die in the first two years after symptoms appear.3 Echocardiography is used to assess severity, namely with peak velocity, mean pressure gradient and aortic valve area. However, there is increasing evidence that elevated mortality risk extends beyond current diagnostic definitions and more patients should be considered for aortic valve replacement.

AI-ENHANCED AS examined whether an AI algorithm developed from echocardiographic parameters routinely used in clinical practice could identify moderate-to-severe and severe aortic stenosis phenotypes associated with increasing five-year mortality. The proprietary AI-Decision Support Algorithm (AI-DSA) used was trained using data from the National Echo Database of Australia (NEDA), which contains more than 1,000,000 echocardiograms from over 630,000 patients and is linked to mortality information. The algorithm was also trained to ensure all guideline-defined severe aortic stenosis was detected. Training was performed using 70% of the NEDA data, which were randomly selected.

Using the remaining 30% of NEDA data, the researchers compared five-year death rates in patients with the moderate-to-severe and severe aortic stenosis phenotypes with five-year death rates in patients without significant risk of severe aortic stenosis. Out of 179,054 individuals, the AI-DSA identified 2,606 (1.4%) with a moderate-to-severe phenotype and 4,622 (2.5%) with a severe phenotype. Of those with a severe phenotype, 3,566 (77.2%) met guideline criteria for severe aortic stenosis.

The five-year mortality rate was 56.2% in patients with the moderate-to-severe phenotype and 67.9% in those with the severe phenotype. Those without either phenotype (the reference group) had a 22.9% five-year mortality rate. Compared with the reference group, the age- and sex- adjusted odds ratio (OR) for all-cause mortality was 1.82 (95% confidence interval [CI] 1.63–2.02) and 2.80 (95% CI 2.57–3.06) for patients with the moderate-to-severe and severe phenotypes, respectively.

Within the severe aortic stenosis phenotype identified by the AI-DSA (4,622; 2.5%), those that met current guidelines (77%) had a five-year mortality of 69.1%. The additional population identified by the AI-DSA with a severe phenotype, but who do not meet current guidelines,  had a mortality rate of 64.4%.

Principal investigator Professor Geoffrey Strange of the University of Notre Dame, Australia said: “This proprietary AI algorithm picks up patients with a high risk (and all patients within current guidelines) of dying within five years that may be missed by conventional definitions. The findings suggest that the AI algorithm could be used in clinical practice to alert physicians to patients who should undergo further investigations to determine if they qualify for aortic valve replacement.”

He concluded: “Given the rising prevalence of aortic stenosis and its impact on mortality, it is time to revisit the practice of watchful waiting and consider more proactive attempts to identify those at risk. More research is needed to determine if aortic valve replacement improves survival and quality of life in patients identified by the AI-DSA as having a high risk of mortality, but who do not meet current guideline definitions.”

 

ENDS

Notes to editor

ESC Press Office
Tel: +33 (0) 7 8531 2036
Email: press@escardio.org

Follow us on Twitter @ESCardioNews 

The hashtag for ESC Congress 2022 is #ESCCongress.

 

This press release accompanies both a presentation and an ESC press conference at ESC Congress 2022. It does not necessarily reflect the opinion of the European Society of Cardiology.

 

Funding: The study was jointly funded by NEDA (“Not for Profit” research entity) and ECHO IQ Ltd (ASX:EIQ). All Intellectual Property is owned by Echo IQ Ltd (ASX:EIQ).

 

Disclosures: GS, DP and SS have received consulting fees from Echo IQ. AW and RP are employed by Echo IQ.

 

References and notes

1AI-ENHANCED AS will be discussed during Hot Line Session 6 on Sunday 28 August at 14:00 to 15:15 CEST in the Barcelona auditorium.

2Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43:561–632.

3Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–1607.

 

About the European Society of Cardiology

The ESC brings together health care professionals from more than 150 countries, working to advance cardiovascular medicine and help people to live longer, healthier lives.

About ESC Congress 2022

It is the world’s largest gathering of cardiovascular professionals, disseminating ground-breaking science both onsite in Barcelona and online – from 26 to 29 August. Explore the scientific programme. More information is available from the ESC Press Office at press@escardio.org.