In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.
Did you know that your browser is out of date? To get the best experience using our website we recommend that you upgrade to a newer version. Learn more.

Cardio-oncology: it is not only heart failure!

Cardio-oncology, the multidisciplinary cardiovascular care of cancer patients, has been proposed as a new approach to improve prevention, early identification and management of cardiotoxicity. While in recent years much of the focus has been on the early detection and prevention of heart failure, cancer therapies are associated with a broad range of cardiovascular toxicities including cardiac arrhythmias, hypertension and ischaemic heart disease. The present article summarises expert-based recommendations on the management of the more prevalent non-heart failure cancer-related cardiovascular toxicities.


Keywords: atrial fibrillation, cardio-oncology, cardiotoxicity, chemotherapy, hypertension, ischaemic heart disease, radiotherapy



As the improvement in cancer patients’ survival has increased the clinical relevance of preventing and monitoring cardiovascular (CV) complications derived from oncological therapies and cardio-oncology has been proposed as a new approach to improve patients´ prognosis [1]. Nowadays, much of the focus has been on the early detection and prevention of heart failure (HF); however, some of the old and new cancer therapies are associated with the development of a broad range of CV toxicities [2]. The present article summarises multidisciplinary expert-based recommendations on the diagnosis, monitoring and treatment of the more prevalent non-HF toxicities including arrhythmias, hypertension and ischaemic heart disease.

Cancer and cardiac arrhythmias

Both the development of new anti-cancer drugs and the improvements in cancer prognosis have dramatically increased the prevalence of cardiac arrhythmias (CA) in cancer patients [3, 4]. However, their incidence is probably underestimated in the literature because patients with pre-existing cardiac diseases have frequently been excluded from oncological trials. A detailed description of the drugs related to CA and their incidence is outside the objectives of this document. For more detail, the reader is referred to recently published reviews [3-7].

The mechanisms by which cancer treatments cause CA are still poorly understood. The individual risk of clinically relevant CA depends on the risk of the specific therapeutic scheme, the presence of comorbidities and the inflammation and metabolic changes induced by cancer itself. In addition, arrhythmic risk is higher in cancer patients according to age (2/3 of patients are over 65) [3,4] and the presence of pre-existing CV risk factors or CV diseases (there is a 30% prevalence of pre-existing CV diseases in cancer patients) [8]. Management of cancer-induced CA is challenging and requires a close collaboration between cardiologists and oncologists. This is particularly relevant for atrial fibrillation (AF) and QT prolongation, the two main arrhythmic issues in these patients. Table 1 summarises the drugs associated with a greater incidence of AF and QT prolongation.


Table 1. Cancer drugs associated with the development of atrial fibrillation, QT prolongation and hypertension and general rules to guide management.

Cancer therapy induced Cancer drug agents

General rules to guide management:

early cardio-oncology consultation
Atrial fibrillation

Alkylating agents

Cisplatin, ifosfamide, cyclophosphamide, melphalan



Capecitabine, 5-FU, gemcitabine




Small molecule TKIs

Ponatinib, sorafenib, sunitinib, ibrutinib

Topoisomerase II inhibitors

Amsacrine, etoposide

  • Early cardio-oncology consultation
  • Promote healthy lifestyle and optimise CVRF control, specially BP control
  • Identify and treat reversible AF precipitant factors
  • Review drug-drug interactions
  • Baseline ECG and regular ECG monitoring
  • Prioritise symptoms and rate control therapy
  • Estimate stroke risk based on CHA2DS2-VASc score
  • Estimate bleeding risk based on HAS-BLED score
  • Reduce modifiable bleeding risk factors
  • Minimise the use of antiplatelet therapy if anticoagulation is needed
QTc prolongation


Histone deacetylase inhibitors

Depsipeptide, belinostat, vorinostat

Chemicals: arsenic trioxide

Tyrosine kinase inhibitors

Axitinib, bosutinib, cabozantinib, crizotinib, dabrafenib, dasatinib, lapatinib, nilotinib, pazopanib, ponatinib, sorafenib, sunitinib, vandetanib, vemurafenib

BRAF inhibitor: vemurafenib

CDK4/6 inhibitors: ribociclib
  • Early cardio-oncology consultation
  • Fridericia correction for QTc calculation
  • Avoid concomitant use of QTc-prolonging medications and electrolyte abnormalities
  • Baseline ECG and regular ECG monitoring during therapy
  • If QTc interval is >500 ms or has increased by more than 60 ms from baseline: consider temporary drug interruption, withdrawal or administration under hospital monitoring.

Monoclonal antibody-based TKI

Bevacizumab, ado-trastuzumab emtansine

Monoclonal antibodies

Alemtuzumab, ibritumomab, ofatumumab, rituximab

mTor inhibitors: everolimus,              temsirolimus

Tyrosine kinase inhibitors

Pazopanib, ponatinib, sorafenib, sunitinib, axitinib,  abozantinib, ibrutinib, nilotinib, ramucirumab, regorafenib, trametinib, vandetanib, ziv-aflibercept

Proteasome inhibitors

Bortezomib, carfilzomib


  • Early cardio-oncology consultation
  • Baseline CVRF assessment
  • BP goal <130/80 mmHg
  • Start antihypertensive therapy if
  • BP >140/90 mmHg in patients <80 yrs
  • BP >160/90 mmHg in patients >80 yrs
  • BP monitoring
  • Weekly during the 1st cycle
  • Every 2–3 weeks for duration of therapy
  • The use of diltiazem and verapamil is not advised as they block the CYP3A4 isoenzyme, which is involved in the metabolic pathway of sorafenib, among others
  • Thiazides should be used with caution because of the risk of hypokalaemia and QTc prolongation
Coronary artery disease


5-fluorouracil, capecitabine

Platinum compounds



Paclitaxel, docetaxel


Bevacizumab, sorafenib, sunitinib


  • Early cardio-oncology consultation
  • Promote healthy lifestyle and optimise CVRF control, specially blood pressure and dislipemia control
  • Baseline echo evaluation in patients with previous coronary artery disease
  • Ischaemia workup: stress test +/- cardiac CT
  • Treatment: as per ESC guidelines (review platelet count!)


The incidence of AF is substantially higher among cancer patients than in the general population [3,5,6]; however, a prior history of AF, or the potential for developing AF, should not prevent physicians from considering any anti-cancer therapy if indicated. As in other high-risk populations, early identification and management of comorbidities and educational programmes are essential to reduce the incidence of AF [9]. Postoperative AF is a frequent well-recognised complication of cancer surgery with an overall incidence of 20%. In high-risk patients, prophylactic treatment with beta-blockers or losartan may help to minimise postoperative AF, particularly after lung cancer surgery [3,5].

As a general rule, in patients with pre-existing AF who need cancer therapy, a cardio-oncology consultation is recommended to optimise AF treatment [9]. The diagnosis of a new AF should also trigger a priority cardio-oncology consultation to decide the best treatment strategy and to avoid unnecessary interruptions of potentially lifesaving oncologic drugs. Heart rate control is the preferred option, given that rhythm control has a limited success during cancer treatment. In the absence of specific risk prediction scores, antithrombotic therapy should be guided by the CHA2DS2-VASc and the HAS-BLED scores [9,10]. Traditionally, the use of vitamin K antagonists (VKAs) is not recommended during active cancer treatment due to the difficulty of ensuring stable international normalised ratio (INR) levels. In valvular AF, the decision to keep VKAs or switch to low molecular weight heparins should be individualised. In this scenario, VKAs remain a reasonable option in patients with stable INRs and a low bleeding risk. Preliminary evidence with direct oral anticoagulants (DOACs) in non-valvular AF is promising in active cancer; however, we need more information to confirm DOACs as a safe alternative [10]. DOAC selection should be individualised based on the potential for drug-drug interactions and comorbidities [10].

A rigorous evaluation of the QT interval is mandatory in patients who receive potential QT-prolonging drugs to minimise the risk of arrhythmias and to prevent unnecessary interruptions of cancer therapies (Table 1) [3,4,6,7]. Initial assessment should include a baseline electrocardiogram (ECG) and regular monitoring of the QT interval during therapy using the Fridericia correction formula. Withdrawal of anti-cancer drugs or administration under hospital monitoring should be considered if the corrected QT interval (QTc) is >500 ms or has increased by more than 60 ms from baseline [3,4,6,7].

Cancer and hypertension

Hypertension (HTN) is the most common comorbidity reported in oncological patients [2-4]. More than one third of cancer patients develop HTN during therapy and this percentage is higher in an aged population [2-4,8]. Oncological therapies may cause HTN through different mechanisms, although the most frequent are vascular endothelial growth factor signalling pathway inhibitors (VEGFi) and proteasome inhibitors (Table 1). It has been reported that VEGFi induce new HTN or destabilise previously controlled HTN in 11 to 45% of patients during the first months of therapy, by inhibiting the production of nitric oxide in the arterial wall [2-4]. HTN was also reported in around 10% of patients treated with proteasome inhibitors. These drugs reduce the vasodilator response to acetylcholine, favouring vasoconstriction and vasospasm as the main mechanism to induce HTN [2-4]. Although HTN is considered an undesirable side effect of cancer therapy, the increase in blood pressure (BP) levels has been shown to predict the efficacy of some cancer therapies, whereas optimal BP control improves treatment tolerance without reducing efficacy [3,4]. BP should be properly managed and monitored before and during cancer treatment, following the pharmacological and dietary recommendations established for the general population [3,4,11]. Early diagnosis and treatment is essential because HTN is a major risk factor for the development of HF and CA, and suboptimal BP control may lead to premature discontinuation of chemotherapy (Table 1) [3,4,11].

As a general rule, the BP target in cancer patients with uncomplicated HTN is <130/80 mmHg [11]. With the exception of low-risk patients or frail older patients, the initiation of treatment with two drugs improves the speed and efficiency of BP control. As in the general population, renin-angiotensin system blockers (RAS) with dihydropyridine calcium channel blockers is the preferred combination [3,4,11]. In patients at risk of HF or AF, RAS and beta-blockers are considered the drugs of choice given their protective profile. If BP is not controlled by the above treatments, the use of a three-drug therapy or the addition of spironolactone is recommended unless contraindicated. Another consideration in choosing antihypertensive agents is to minimise harmful drug-drug interactions [3,4,11].

Cancer and ischaemic heart disease

Several cancer therapies can lead to cardiac ischaemia or, in the worst cases, result in myocardial infarction. The mechanisms by which drugs can cause vascular toxicity range from a direct vasospastic effect to endothelial injury or premature atherosclerosis. The most notorious cancer therapeutics resulting in myocardial ischaemia are fluoropyrimidines including 5-fluorouracil (5-FU) and its oral precursor capecitabine. Both agents can lead to coronary artery spasms and endothelial dysfunction. In a prospective study including 367 patients, the use of high-dose 5-FU resulted in cardiac events in 28 patients (7.6%). The majority of the events consisted of unstable angina and/or hypotension. Sudden cardiac death was observed in four patients [12]. In a more recent study including 358 patients receiving 5-FU, 21 of them (5.9%) had ischaemia at rest. In the patients with no ischaemia at rest, 16 (6.9%) subsequently had exercise-induced ischaemia. In 14 of them, a second exercise test after stopping 5-FU showed no ischaemia anymore. The majority of patients with a positive exercise test had no symptoms, so-called silent ischaemia [13]. In some patients, 5-FU, but also capecitabine, can lead to fatal myocardial infarction [3]. 

Another class of drugs associated with vascular toxicity is cisplatin. Arterial thrombosis may develop in 2-8% of patients treated with cisplatin [3]. Furthermore, VEGFi, such as bevacizumab and sunitinib, have also been associated with arterial thrombosis ranging from 1-4%, depending on the underlying disease, with the highest percentage in patients with metastatic disease [2,3].

There are no specific recommendations for ischaemic heart disease prophylaxis in cancer patients. As in those without cancer, preventive strategies should be based on a strict CV risk factor control and clinical surveillance. When required, testing for the detection of ischaemia (electrocardiogram [ECG] or echo stress test) and coronary artery disease (cardiac CT) are recommended. For patients with angina, treatment optimisation is recommended, as well as control of precipitating factors such as anaemia. Nitroglycerin or calcium antagonist administration can prevent recurrence of vasospastic angina if there are no oncologic therapeutic alternatives [14]. In patients with persistent symptoms, an eventual revascularisation may facilitate therapy tolerance. Revascularisation strategies should be individualised as well as the need for antithrombotic therapy due to the high risk of bleeding and thrombocytopaenia in this population [3] (Table 1).

Radiotherapy CV side effects

Radiotherapy plays an important role as an adjuvant therapy in the majority of malignancies and improves disease-free and overall survival. However, the benefits of radiotherapy may be offset by side effects, which may only become apparent many years after the initial treatment. Radiation exposure of the thoracic region may lead to pericardial disease, macrovascular and microvascular coronary artery disease (CAD), valvular heart disease, conduction diseases, autonomic dysfunction and myocardial fibrosis [3,15]. Additionally, many cancer patients receive multimodal treatment in which radiotherapy poses an additional risk of CV complications [16].

Acute pericarditis has become unusual after radiotherapy due to the lower doses used and new techniques to keep the heart out of the radiation field. Treatment of acute pericarditis does not differ from other aetiologies and includes the use of colchicine and NSAIDs as first-line therapy [3]. Chronic pericarditis occurs mostly in patients after high-dose radiotherapy and may lead to pericardial effusion and, ultimately, to a constrictive pericarditis. If pericardial thickening is severe enough to cause a symptomatic chronic constrictive pericarditis, early pericardiectomy is indicated, even if the cardiac surgery risk is higher than in other aetiologies [3,15]. 

Radiotherapy is an independent risk factor for microvascular endothelial inflammation implicated in the pathogenesis of accelerated atherosclerosis and heart failure, usually associated with preserved ejection fraction [15]. The risk of radiation-induced CAD is directly related to radiation doses, increases over time and is magnified by the presence of CV risk factors. Usually the distribution of CAD reflects the radiation field: typically, lesions are clustered in a proximal distribution, increasing the risk of larger myocardial infarctions even in young patients without traditional cardiac risk factors (Figure 1) [15]. A large Scandinavian case control study in over 2,000 patients with breast cancer showed a linear relationship between mean heart dose and the risk of an ischaemic event. The risk of a major coronary event increased by 7.4% per gray mean dose to the heart and no dose threshold could be observed [17]. The increase started within the first five years after radiotherapy and continued to increase over decades. For example, for a 70-year-old woman without CV risk factors receiving a mean heart dose of 10 gray, her cardiovascular risk increases to a similar extent as having an established CV risk factor without having received radiotherapy. In a recent study; it has been shown that especially the dose received by the LV was a better predictor of acute coronary events compared to the mean heart dose [18]. The increased risk for CAD highlights the importance of assessing CV risk factors in patients treated with radiotherapy; however, it is unclear whether a screening programme (e.g., coronary CT angiography in patients exposed to radiotherapy) may be beneficial. Since treatment with radiotherapy is an important risk factor for CAD, it seems prudent that CV risk factors, including hypercholesterolaemia and hypertension, should be treated aggressively along with lifestyle interventions [2,3,16].


Figure 1. Clinical case. A 42-year-old female presented to the cardio-oncology clinic complaining of mild chest pain and transient dizziness during sports practice. The patient had a history of Hodgkin’s disease treated with anthracycline-based chemotherapy and mediastinal radiotherapy at 16 years old.  She had no other CV risk factors. Baseline electrocardiogram revealed sinus rhythm with no associated repolarisation abnormalities. Echocardiographic examination showed an LVEF of 57%. Non-invasive coronary imaging using computed tomography angiography revealed a non-calcified significant lesion at the left main coronary artery. Subsequent cardiac catheterisation revealed severe disease in the left main coronary artery. A drug-eluting stent was placed without associated complications. The patient was discharged under aspirin, prasugrel and atorvastatin. She remains asymptomatic at follow-up.


162_Lopez-Fernandez_figure 1.JPG


Mediastinal radiation may also cause both accelerated atherosclerotic calcification and dystrophic calcification of the aorta and great vessels, leading to an excess risk of stroke in long-term survivors across all ages [15,17].

Significant valvular heart disease may occur after radiotherapy, especially with doses exceeding 30 gray. In a retrospective study, 415 patients with Hodgkin’s lymphoma were matched with a general population. It appeared that treated patients were eight times more likely to receive valvular surgery compared to the matched general population [19].

Another chronic problem regarding radiation therapy is cardiac arrhythmias. ECG abnormalities are frequent during and after radiotherapy as well as AF generally related to pericardial inflammation and anti-cancer drugs. Cardiac autonomic dysfunction occurs after mediastinal radiation more frequently in young patients. These patients have an increased prevalence of an elevated resting heart rate, an abnormal heart rate recovery and blunted blood pressure response during all stages of exercise/recovery compared with control subjects. These conditions limit exercise capacity and are associated with increased all-cause mortality and a higher incidence of AF [20].


Cardiovascular toxicity is a reality that impacts on the quality of life and overall survival of cancer patients. Careful analysis of the needs of these patients is mandatory in order to develop preventive strategies focused on the early detection and treatment of CV toxicities. We need cardio-oncology multidisciplinary teams to integrate skills and abilities and to standardise the care process.


  1. Lancellotti P, Suter TM, López-Fernández T, Galderisi M, Lyon AR, Van der Meer P, Cohen Solal A, Zamorano JL, Jerusalem G, Moonen M, Aboyans V, Bax JJ, Asteggiano R. Cardio-Oncology Services: rationale, organization, and implementation: A report from the ESC Cardio-Oncology council. Eur Heart J. 2018 Aug 6. [Epub ahead of print].
  2. Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis, Prevention, and Management: Part 2. J Am Coll Cardiol. 2017;70:2552-65. 
  3. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM; ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768-801. 
  4. López-Fernández T, Martín García A, Santaballa Beltrán A, Montero Luis Á, García Sanz R5, Mazón Ramos P, Velasco Del Castillo S, López de Sá Areses E, Barreiro-Pérez M, Hinojar Baydes R, Pérez de Isla L, Valbuena López SC, Dalmau González-Gallarza R, Calvo-Iglesias F, González Ferrer JJ, Castro Fernández A, González-Caballero E, Mitroi C, Arenas M, Virizuela Echaburu JA, Marco Vera P, Íñiguez Romo A, Zamorano JL, Plana Gómez JC, López Sendón Henchel JL. Cardio-Onco-Hematology in Clinical Practice. Position Paper and Recommendations. Rev Esp Cardiol (Engl Ed). 2017;70:474-86. 
  5. Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63:945-53. 
  6. Buza V, Rajagopalan B, Curtis AB. Cancer Treatment-Induced Arrhythmias: Focus on Chemotherapy and Targeted Therapies. Circ Arrhythm Electrophysiol. 2017;10:e005443. 
  7. Porta-Sánchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, Thavendiranathan P.  Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J Am Heart Assoc. 2017;6:e007724. 
  8. Al-Kindi SG, Oliveira GH. Prevalence of preexisting cardiovascular disease in patients with different types of cancer: the unmet need for Onco-Cardiology. Mayo Clin Proc. 2016;91:81-3. 
  9. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P; ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893-962. 
  10. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, Haeusler KG, Oldgren J, Reinecke H, Roldan-Schilling V, Rowell N, Sinnaeve P, Collins R, Camm AJ, Heidbüchel H; ESC Scientific Document Group. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39:1330-93. 
  11. Williams B, Mancia G, Spieringet W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3012-104. 
  12. de Forni M, Malet-Martino MC, Jaillais P, Shubinski RE, Bachaud JM, Lemaire L, Canal P, Chevreau C, Carrié D, Soulié P. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10:1795-801. 
  13. Lestuzzi C, Vaccher E, Talamini R, Lleshi A, Meneguzzo N, Viel E, Scalone S, Tartuferi L, Buonadonna A, Ejiofor L, Schmoll HJ. Effort myocardial ischemia during chemotherapy with 5-fluorouracil: an underestimated risk. Ann Oncol. 2014;25:1059-64. 
  14. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39:974-84. 
  15. Desai MY, Jellis CL, Kotecha R, Johnston DR, Griffin BP. Radiation-Associated Cardiac Disease: A Practical Approach to Diagnosis and Management. JACC Cardiovasc Imaging. 2018;11:1132-49. 
  16. Tromp J, Steggink LC, Van Veldhuisen DJ, Gietema JA, van der Meer P. Cardio-Oncology: Progress in Diagnosis and Treatment of Cardiac Dysfunction. Clin Pharmacol Ther. 2017;101:481-90. 
  17. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante B, Jensen MB, Nisbet A, Peto R, Rahimi K, Taylor C, Hall P. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987-98. 2003&
  18. van den Bogaard VA, Ta BD, van der Schaaf A, Bouma AB, Middag AM, Bantema-Joppe EJ, van Dijk LV, van Dijk-Peters FB, Marteijn LA, de Bock GH, Burgerhof JG, Gietema JA, Langendijk JA, Maduro JH, Crijns AP. Validation and Modification of a Prediction Model for Acute Cardiac Events in Patients With Breast Cancer Treated With Radiotherapy Based on Three-Dimensional Dose Distributions to Cardiac Substructures. J Clin Oncol. 2017;35:1171-8. 
  19. Hull MC, Morris CG, Pepine CJ, Mendenhall NP. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA. 2003;290:2831-7. 
  20. Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, Forman DE, Di Carli MF, Nohria A. Abnormal exercise response in long-term survivors of hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65:573-83. 

Notes to editor


Teresa López-Fernández1, MD; Peter Van der Meer2, MD, FESC

On behalf of the Council of Cardio-Oncology of the European Society of Cardiology

  1. Department of Cardiology, La Paz University Hospital, IdiPAZ, CiberCV, Madrid, Spain;
  2. Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands


Address for correspondence:

Dr Teresa López-Fernández,  Hopsitla universitario La Paz. Servicio de Cardiología. Paseo de la Castellana 261, 28046, Madrid, Spain



Author disclosures:

Teresa López-Fernández reports receiving speaker’s fees from Pfizer, Novartis, TEVA, Janssen, Gilead, Amgen, and Daiichi-Sankyo. 

Peter van der Meer reports receiving speaker’s fees from Vifor Pharma, Novartis, AstraZeneca, Biotronik, and Pfizer, and has received grants from Ionis, AstraZeneca, Vifor Pharma and Pfizer.



On behalf of the Council of Cardio-Oncology of the European Society of Cardiology




The content of this article reflects the personal opinion of the author/s and is not necessarily the official position of the European Society of Cardiology.