In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.
Did you know that your browser is out of date? To get the best experience using our website we recommend that you upgrade to a newer version. Learn more.

We use cookies to optimise the design of this website and make continuous improvement. By continuing your visit, you consent to the use of cookies. Learn more

Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress

Valvular Heart Diseases


Background :
During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown.

Methods and Results
Perfusion of activated human endothelial cells with fluorescent bacteria under high-shear-rate conditions revealed 95% attachment of the S aureus by ultralarge von Willebrand factor (ULVWF). Flow experiments with VWF deletion mutants and heparin indicate a contribution of the A-type domains of VWF to bacterial binding. In this context, analyses of different bacterial deletion mutants suggest the involvement of wall teichoic acid but not of staphylococcal protein A. The presence of inactivated platelets and serum increased significantly ULVWF-mediated bacterial adherence. ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motifs 13) caused a dose-dependent reduction of bacterial binding and a reduced length of ULVWF, but single cocci were still tethered by ULVWF at physiological levels of ADAMTS13. To further prove the role of VWF in vivo, we compared wild-type mice with VWF knockout mice. Binding of fluorescent bacteria was followed in tumor necrosis factor-α–stimulated tissue by intravital microscopy applying the dorsal skinfold chamber model. Compared with wild-type mice (n=6), we found less bacteria in postcapillary (60±6 versus 32±5 bacteria) and collecting venules (48±5 versus 18±4 bacteria; P<0.05) of VWF knockout mice (n=5).

Conclusions
Our data provide the first evidence that ULVWF contributes to the initial pathogenic step of S aureus–induced endocarditis in patients with an apparently intact endothelium. An intervention reducing the ULVWF formation with heparin or ADAMTS13 suggests novel therapeutic options to prevent infective endocarditis.

Notes to editor


Circulation. 2013;128:50-59
The content of this article reflects the personal opinion of the author/s and is not necessarily the official position of the European Society of Cardiology.