Diastolic Function

Jens-Uwe Voigt
Dpt. of Cardiovascular Diseases
Cath. University Leuven
Belgium

What is that?

JU Voigt, University Leuven, Belgium

Defining Systole

pressures [mmHg]
volume [ml]
phono
venous puls
ECG

systole

JU Voigt, University Leuven, Belgium

Defining Diastole

pressures [mmHg]
volume [ml]
phono
venous puls
ECG

diastole

JU Voigt, University Leuven, Belgium

Defining Diastole

ET
RF
diastasis
AC
IC
IR
AVO
AVC
MVC
MVO
valves
period
local change in muscle length (strain)
hemodynamic muscle
contr.
relaxation
compliance

systole
diastole

JU Voigt, University Leuven, Belgium

Wall Stress vs. Cavity Pressure

law of Laplace

\[\sigma = \frac{p \cdot r}{2d} \]

JU Voigt, University Leuven, Belgium
Wall Stress vs. Cavity Pressure

law of Laplace

Diastolic Function

complex interaction of:
- compliance
- relaxation
- loading
- energy supply

... allowing adequate filling of the ventricle

Determinants of Diastolic Function

Model of LV Myocardium

active elements
- p_a - actin / myosin

passive elements
- p_e - elasticity
 - chamber restoring forces
 - torsion
- p_{EDPVR} - unstrained volume equilibrium
- p_{VE} - viscoelasticity
 - flow / heart rate dependent

Model of LV Myocardium

active elements
- p_a - actin / myosin

passive elements
- p_e - elasticity
 - chamber restoring forces
 - torsion
- p_{EDPVR} - unstrained volume equilibrium
- p_{VE} - viscoelasticity
 - flow / heart rate dependent
Diastolic Function

active: detachment of actin - myosin - bridges

5.3 pN / cross-bridge
100 cross-bridges / filament
5.7*10^10 filaments / cm²
30 N/cm² (≈ 3 kg/cm²)

Diastole

Model of LV Myocardium

active elements
- \(p_a \) - actin / myosin

passive elements
- \(p_r \) - elasticity
- \(P_{EDPVR} \) - EDPVR (unstressed volume equilibrium)
- \(P_{VE} \) - viscoelasticity

flow / heart rate dependent

Myocardial Fibre Architecture

fibre / cross fibre shortening

adapted from: Rademakers et al., Circ '94

Relaxation

passive: restoring forces

- cross fibre shortening
- structural level
 - collagen between fibres and muscle layers
 - titin in myocytes
- external modulation
 - erectile function of coronary perfusion (?)
 - filling pressure (pathologic)
Diastolic Haemodynamics

Diastole

Model of LV Myocardium

active elements
- p_a - actin / myosin

passive elements
- p_r - elasticity chamber restoring forces

p_P - EDPVR

p_VE

viscoelasticity

flow / heart rate dependent

Definitions

Compliance

\[C = \frac{\Delta \text{volume}}{\Delta \text{pressure}} \]

Stiffness

\[E = \frac{\text{stress}}{\text{strain}} \]

synonyms:
- Young’s modulus
- modulus of elasticity
- elastic modulus

The Ventricle

pressure – volume - relation

Diastolic Function

How to Assess it?

traditional indices:
- mitral inflow
- pulmonary vein inflow
- morphology
- LV wall motion / EF
- LV size / wall thickness
- LA size
Diastolic Dysfunction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral inflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary venous flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relaxation / Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traditional Diastolic Parameters

- Biphasic response: IVRT: ↑↑ ↓↓ E:A: ↑↑ ↓↓ DecT*: ↑↑ ↓↓
 * E:A ↑↑ and DecT↓↓ may occur in young people with good function!

Mitral Inflow Profile

- Age dependence

Diastolic Dysfunction

- Dysfunction: none, mild "impaired relaxation", moderate "pseudo-normal", severe "restrictive"
- LV pressure: none
- LA pressure: none
- Mitral inflow: none
- Mitral ring velocity: none

Estimating Filling Pressure

- Filling pressure vs. E/e':

E/e' in Recommendations

- Special article

How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction from the Heart Failure and Echocardiography Associations of the European Society of Cardiology
E/e’ and Diastolic Function

- E/e’ vs. filling pressure
- Δ E/e’ vs. Δ filling pressure

Diast. Lengthening Velocity

- Depends on systolic function and preload!

E/e’ and Diastolic Dysfunction

- E/e’ is unreliable in:
 - normal healthy people
 - overfilling
 - mitral stenosis / ~insufficiency
 - hypertrophic cardiomyopathy
 - bad LV function / CAD
 - bundle branch blocks / CRT
 - constrictive pericarditis

Estimation of Filling Pressures

- ... with impaired LV function
- ... with normal LV function
Assessment of Diastolic Function

- Septal e’ > 8
- Lateral e’ > 10
- LA Vol. < 34ml/m²
 - E/A < 0.8
 - DT > 200ms
 - E/e’ < 8
 - Grade I

- Septal e’ < 8
- Lateral e’ < 10
- LA Vol. > 34ml/m²
 - E/A 0.8 - 1.5
 - DT 160 – 200ms
 - E/e’ 8 - 13
 - Grade II

- E/A > 2
- DT < 160
- E/e’ > 13
- Ar-A > 30ms
 - Grade III

Why measuring it?

- Diastolic Function

Summary

Diastolic function of the LV is complex and multifactorially determined.

- No Doppler-echocardiographic parameter alone allows a reliable diagnosis of elevated filling pressures in all cases.
- The assessment of diastolic dysfunction is often difficult and rarely influences clinical decision making.
- Diastolic function assessment should always consider all available echocardiographic parameters and clinical information.

Summary (Continued)

- EAE / EAHF criteria for diagnosing "HFNEF"
 - Diastolic Function and Diagnosis
 - Diastolic Function and Diagnosis

- JU Voigt, University Leuven, Belgium

Why measuring it?

- JU Voigt, University Leuven, Belgium