Index of Microcirculatory Resistance: The Basics

William F. Fearon, MD
Associate Professor of Medicine
Director, Interventional Cardiology
Stanford University Medical Center
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship
- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company
- St. Jude Medical, Medtronic, NHLBI
- Medtronic
- Minor stock options: HeartFlow
Assessment of the Microvasculature

Diagnostic Challenge

Assessment of the Microvasculature

Diagnostic Challenge

A

Epicardial vessel

Prearterioles

Arterioles

Epicardium

Endocardium

B

Conduit vessels

Flow distribution

Metabolic flow control

Epicardium

Endocardium

Epicardial CAD

Microvascular Dysfunction

Assessment of the Microvasculature

- Extremely challenging diagnosis
 - Heterogeneous patient population
 - Variety of pathogenetic mechanisms
 - Poor anatomic resolution
 - Potentially patchy nature of the disease

- Therefore, assessment of the microvasculature is primarily *functional* and not *anatomic*
Evaluating the Microcirculation...
...in the Cath Lab

TIMI Myocardial Perfusion Grade:
Evaluating the Microcirculation…

...in the Cath Lab

TIMI Myocardial Perfusion Grade:
- Easy to obtain
- Specific for microvasculature
- Predictive of outcomes in large studies

Drawbacks:
- Qualitative
- Interobserver variability
- Not as useful in smaller studies
Doppler Wire Coronary Flow Reserve

\[CFR = \frac{\text{Hyperemic Flow}}{\text{Resting Flow}} \]
Coronary Wire-Based Assessment

Coronary Flow Reserve

- Not microvascular specific
- No clearly defined normal value
- Affected by resting hemodynamics

Pijls NHJ and De Bruyne B, Coronary Pressure
Index of Microcirculatory Resistance

Epicardial Vessel

FFR

IMR

Microvasculature
Index of Microcirculatory Resistance

Potential Advantages:

- Readily available in the cath lab
- Specific for the microvasculature
- Quantitative and reproducible
- Predictive of outcomes
Estimation of Coronary Flow

Calculation of mean transit time

Resistance = Δ Pressure / Flow

Δ Pressure = $P_d - P_v$ Flow $\approx 1 / T_{mn}$

IMR = $P_d - P_v / (1 / T_{mn})$

IMR = $P_d \times T_{mn}$ at maximal hyperemia…

Practical Measurement of IMR

$$IMR = P_d \times Hyperemic T_{mn}$$

$$= 89 \times 0.37$$

$$= 33$$
IMR Case Example

Cardiac transplant recipient enrolled in study evaluating ACE inhibition
IMR Case Example

Cardiac transplant recipient enrolled in study evaluating ACE inhibition
Accessing IMR
Flushing the System
Resting T_{mn} Measurements
Hyperemic T_{mn} Measurements
Calculating IMR

IMR = \(P_d \times \text{Hyp} \times T_{mn} \)
IMR = 59 \times 0.39
IMR = 23
Animal Validation of IMR

Animal Validation of IMR

- Normal Microcirculation
- Abnormal Microcirculation

p = 0.002

Circulation 2003;107:3129-3132
Animal Validation of IMR

Circulation 2003;107:3129-3132
Animal Validation of IMR

- IMR
- TMR

% Change after Disruption of the Microcirculation

Total Group
Stenosis Absent
Stenosis Present

p = NS

Reproducibility of IMR

Effect of Pacing on FFR/CFR/IMR

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>RV Pacing at 110 bpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFR</td>
<td>3.1 ± 1.1</td>
<td>$2.3 \pm 1.2^\dagger$</td>
</tr>
<tr>
<td>IMR, U</td>
<td>21.8 ± 6.5</td>
<td>22.9 ± 6.9</td>
</tr>
<tr>
<td>FFR</td>
<td>0.88 ± 0.07</td>
<td>0.87 ± 0.07</td>
</tr>
</tbody>
</table>

Effect of Blood Pressure on FFR/CFR/IMR

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Nitroprusside</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFR</td>
<td>2.9 ± 0.9</td>
<td>2.5 ± 1.2</td>
</tr>
<tr>
<td>IMR, U</td>
<td>23.85 ± 6.1</td>
<td>24.00 ± 7.9</td>
</tr>
<tr>
<td>FFR</td>
<td>0.88 ± 0.04</td>
<td>0.87 ± 0.05</td>
</tr>
</tbody>
</table>

Change in LV Contractility and FFR/CFR/IMR

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Dobutamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFR</td>
<td>3.0 ± 1.0</td>
<td>$1.7 \pm 0.6^\dagger$</td>
</tr>
<tr>
<td>IMR, U</td>
<td>22.2 ± 6.0</td>
<td>23.6 ± 8.2</td>
</tr>
<tr>
<td>FFR</td>
<td>0.88 ± 0.06</td>
<td>0.87 ± 0.06</td>
</tr>
</tbody>
</table>

Reproducibility of IMR

Mean correlation coefficients of IMR, CFR and FFR values comparing baseline measurement with each hemodynamic intervention

\[P < 0.05 \]

Reproducibility of IMR

Coefficient of variation between pairs of baseline values of IMR and CFR

P < 0.01

Reproducibility of IMR

Repeated IMR measurements obtained by 4 different operators in 12 STEMI patients were highly correlated \((r=0.99, \ P<0.001)\), with a mean difference between IMR measurements of 0.01 (mean standard error 1.59 [95% CI −3.52 to 3.54], \(P=0.48\)).

An IMR ≤ 25 is considered normal

- The mean IMR measured in 15 subjects (22 arteries) without any evidence of atherosclerosis and no/minimal risk factors was 19 ± 5.

- The mean IMR measured in 18 subjects with normal stress tests and normal coronary angiography was 18.9 ± 5.6.

Luo, et al. Circ Cardiovasc Interv 2014;7:
IMR and Epicardial Stenosis

Role of collaterals when measuring IMR in patients with significant epicardial stenosis

- Resistance = \(\frac{\text{Pressure}}{Q_{\text{myo}}} \)
- \(Q_{\text{myo}} = Q_{\text{cor}} + Q_{\text{coll}} \)
- Simplified IMR = \(P_d \times T_{mn} \)
- But \(T_{mn} \) is inversely proportional to coronary flow

Importance of Collaterals when Measuring IMR

\[
\begin{align*}
Q_{\text{cor}} & \quad Q_{\text{coll}} & \quad P_d & \quad R_{\text{myo}} \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow
\end{align*}
\]

Importance of Collaterals when Measuring IMR

To measure true IMR, must measure coronary wedge pressure to incorporate collateral flow

\[\text{IMR} = P_d \times T_{mn} \times \left(\frac{\text{FFR}_{\text{cor}}}{\text{FFR}_{\text{myo}}} \right) \]

Flow ↓’s more than it should, T_{mn} ↑’s and IMR_{app} = P_d \times T_{mn} ↑’s

To measure true IMR, must measure coronary wedge pressure to incorporate collateral flow
IMR is not affected by epicardial stenosis severity:

Animal Validation

![Graph showing IMR values across different stenosis severities.](image)

IMR_{app}

p < 0.001

IMR

p = 0.30

Circulation 2004;109:2269-2272
IMR is not affected by epicardial stenosis severity:

Human Validation

<table>
<thead>
<tr>
<th>Stenosis</th>
<th>FFR ± SD</th>
<th>IMR ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% AS</td>
<td>0.53 ± 0.19</td>
<td>22 ± 15</td>
</tr>
<tr>
<td>50% AS</td>
<td>0.90 ± 0.12</td>
<td>22 ± 15</td>
</tr>
<tr>
<td>75% AS</td>
<td>0.84 ± 0.08</td>
<td>23 ± 14</td>
</tr>
</tbody>
</table>

IMR is not affected by epicardial stenosis severity:

Estimating True IMR without Wedge

- IMR = P_d x T_{mn} x (\text{FFR}_{\text{cor}} / \text{FFR}_{\text{myo}})
- IMR = P_d x T_{mn} x ((P_d-P_w)/(P_a-P_w) / (P_d/P_a))

If there is a relationship between FFR_{cor} and FFR_{myo}, perhaps we can estimate FFR_{cor} without having to measure the coronary wedge pressure.

In a derivation cohort of 50 patients, a strong linear relationship was found between FFR_{cor} and FFR_{myo}.
Estimating True IMR without Wedge

In a validation cohort of 72 patients, there was no significant difference in IMR with estimate FFR_{cor} or measured FFR_{cor}.

Estimating True IMR without Wedge

In a validation cohort of 72 patients, there was no significant difference in IMR with estimate FFR_{cor} or measured FFR_{cor}.

Clinical Application of IMR

59 year old man with HTN, dyslipidemia and chest pain with emotional stress and septal ischemia on Nuclear Scan
IMR = 76 \times 0.70 = 53
Chest Pain and “Normal Coronaries”

- 139 patients referred for coronary angiography because of symptoms and/or abnormal stress test and found to have “normal” appearing coronaries

- FFR, IMR, CFR, IVUS and acetylcholine challenge were performed down the LAD

Chest Pain and “Normal Coronaries”

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>n=139</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>54 ±11</td>
</tr>
<tr>
<td>Female</td>
<td>77%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>53%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>23%</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>63%</td>
</tr>
<tr>
<td>Tobacco Use</td>
<td>8%</td>
</tr>
</tbody>
</table>

Chest Pain and “Normal Coronaries”

- The mean IMR was 19.6 ±9.1
- Microvascular dysfunction was present in 21% (defined as IMR ≥ 25)
- Predictors of microvascular dysfunction were age, diabetes, HTN, and BMI

Chest Pain and “Normal Coronaries”

- 5% of patients had an FFR of the LAD ≤ 0.80
- 44% had epicardial endothelial dysfunction
- 58% had a myocardial bridge
- 24% had nonischemic FFR, normal IMR, no endothelial dysfunction and no “bridge”

IMR Before PCI in Stable Patients

IMR measured before PCI in 50 stable patients undergoing LAD PCI

Predictive Value of IMR after PCI for STEMI

IMR predicts peak CK in patients with STEMI

![Graph showing IMR predicts peak CK in patients with STEMI](graph.png)

- **IMR ≤32**: 1201 ± 911
- **IMR >32**: 3128 ± 1634

J Am Coll Cardiol 2008;51:560-5
IMR and Outcomes post STEMI

Multicenter study evaluating relationship between IMR and longer-term outcomes in 253 STEMI patients

Circulation 2013; 127:2436-2441.
IMR post Stem Cell Therapy

IMR measured in 15 patients with ischemic cardiomyopathy before and 6 months after intracoronary stem cell delivery

IMR post Statin Therapy

IMR measured after PCI in 80 patients randomized to either 1 month pretreatment with pravastatin or placebo
IMR post ACE Inhibitor Therapy

40 patients randomized to IC enalaprilat or placebo prior to PCI

Limitations of IMR

- Invasive

- Interpatient and intervessel variability?
 - Sensor distance

- Independent of epicardial stenosis
 - Coronary wedge pressure
Conclusion

Take Home Messages:

- The microvasculature is a complex entity, which is challenging to investigate.

- Measurement of IMR is easy, specific for the microvasculature, quantitative, reproducible, and independent of hemodynamic changes.

- Measurement of IMR may help guide treatment in patients with “normal coronaries” and chest pain. IMR predicts outcomes in acute MI; emerging data suggest its utility in stable PCI patients, as well.