Industry Expectations:
Discovery, Research, Development, Access to medicines
Pharmaceutical R&D Ecosystem – radical changes

- Change in demographics
- R&D productivity
- Rapid escalation of costs
- Higher risks of failure
- Global tightening and conservatism of regulatory policy
- Diminishing advantages of being first to market
- Changes in social expectations
- Patent expiration
- Science & Technology
- Economical crisis
- HTA, pricing & reimbursement

1. Priorities for Research
2. Value based development and access to medicines
3. Modalities of Discovery
Priorities of Research

- Unsatisfied Need
- Added Benefit

- Level of Innovation:
  - Important
  - Moderate
  - Modest
Priorities of Research

- Orphan Diseases
- Diseases with residual needs
- Diseases with mostly satisfied needs
- Diseases with off patent drugs

Unsatisfied Need vs. Added Benefit
2011 FDA drug approvals
The US FDA approved 30 new therapeutics last year, including 11 first-in-class agents.

Asher Mullard
Last year the US Food and Drug Administration (FDA)’s Center for Drug Evaluation and Research (CDER) gave the green light to 24 new molecular entities and 6 new biologics. The approval of 30 new therapeutics is the most since 2004, which saw 36 products approved. The relative bumper crop, moreover, includes a substantial number of novel drugs that address major unmet medical needs, hit new targets and leverage the promise of genetic approaches to understanding disease.

“It is a really exciting list,” says Chris Milne, Associate Director of the Tufts Center for the Study of Drug Development, in Boston, Massachusetts, USA. Andrew Jones, an analyst at Ernst & Young, agrees. “The thing to focus on is the level of innovation within the set of approvals,” he says. And indeed, the standout statistics, he adds, are the approval of 11 first-in-class.

Big winners among companies involved in the approvals were GlaxoSmithKline and Johnson, which, with Pfizer, both brought three new drugs to the market.

“In terms of approvals, the FDA did its job,” adds Richard Schmidt, an analyst at Cowen. “The agency was in reviewing their drugs, in general they hit their timelines, and for the most part the decisions were not too surprising.” Nineteen of the approvals were granted to drugs in

Orphan and cancer overlap
One of the clearest trends evident within the list was the preponderance of orphan products, which accounted for 11 out of 30 approvals (TABLE 1). This focus reflects a decade-long shift by drug developers towards potential niche busters — often targeted at focused patient populations for which the disease biology is relatively well understood or for which there are few or no good existing treatments. “Overall, we’ve found that around 25% of new agents over the past half decade or so have been orphan drugs,” says Milne. Unlike previous years, however, these orphan designations were
Rate of Orphan Product Approvals Remain Flat

**All Orphan Designations and Approvals (USA)**

- Orphan Designations
- Approvals

**All Orphan Designations and Approvals (EU)**

- Orphan Designations
- Approvals
Rare Diseases Drug Development
a Challenging Reality

- **Substantial heterogeneity of patient population**
  - Difficulty in clearly defining the patient population – clinical presentation, disease subtype

- **Small patient populations**
  - Difficulty in demonstrating statistical significance
  - Geographically dispersed patients – recruitment

- **Limited clinical experiences**
  - Common problems for medical sites, industry and agency
  - Challenge of defining practical clinical endpoints

- **Traditional study designs often not feasible**
  - Randomization of trials and inclusion of control arms can be untenable
  - Double-blind design with placebo or standard of care is often difficult to apply
  - Regulatory expectations established primarily for more common diseases => big, long clinical studies
Accelerating access to treatments for rare diseases

Marc Dunoyer

Changes in regulatory policy and legislative incentives to promote the development of drugs for rare diseases — orphan drugs — have led to increases in the number of orphan drug designations, but the rate of such products reaching the market remains frustratingly flat. This article highlights areas in which novel approaches could facilitate regulatory approval and access to treatments for rare diseases.

10 solutions to accelerate access to treatments in rare diseases

1. Importance of continued flexible orphan incentives
2. Role of Patients’ disease registries & post-approval studies
3. Global Simplification-Harmonization of regulatory requirements
Patient Timely Access to Rare Diseases Treatments
Development Process as a Continuum

Accelerated and Conditional approval should become the default pathway in this priority population provided sufficient dialogue has taken place between patients, physicians, drug developers and HTA.

Progressive assessment and approval mechanism as a standard practice

Compelling arguments:
- small patient population
- Concentration of clinical research activities in CoE
- High level of specialization of the treating physician
- Wealth of scientific knowledge among patients & their families = high quality interaction with the clinician

April 2012
Value & Specificity of the Rare Diseases
Model the Policy Equation

Health Budgets

Health policy

Industrial policy

Unmet need
Patient care & access
Equity & solidarity

R&D innovation
Economic ROI
Industry competitiveness
Define Medicine Therapeutic Value

Value attributes
Value criteria definition

Rare Disease Unmet Need
- Treatment available
- Disease Clinical severity
- Disease Social Impact

Medicine Therapeutic Benefit
- Treatment innovation
- Treatment Clinical Benefit and outcome
- Treatment Social outcome

7. Major improvement
4. Moderate improvement
1. Small improvement
Tiered pricing based on payers’ willingness/ability to pay

**Global patient reach**

- Tier 1: USA + EU + Japan
- Tier 2: High income
- Tier 3: Upper Middle Income
- Tier 4: Middle Income
- Tier 5: Low Middle Income

**Illustrative case study**

- Monthly Price Index

  - Germany
  - Taiwan
  - Malaysia
  - Brazil
  - China

*Patient Access & Global Reach*
Modalities of Discovery

The Future Is Much Closer Collaboration Between the Pharmaceutical Industry and Academic Medical Centers

P Vallance1, P Williams1 and C Dollery1

A reader of newspaper articles and editorials in some medical journals might conclude that relationships between pharmaceutical companies and academic clinical investigators are dominated by mistrust and the desire of academics to keep industry at a distance from the high moral ground of academia. Fortunately, that is not a correct analysis of a complex situation, but even the perception is an impediment to the needed need for the parties to work very closely together with a shared desire to improve human health.

Physiological control mechanisms in living animals and humans, and this in turn led to the emergence of flourishing academic departments of pharmacology and clinical pharmacology. James Tyler developed an adrenergic blocking drugs with the treatment of angina pectoris, and the opportunity provided by these agents found applications in clinical situations as varied as tremor and heart failure. Many academic scientists became advisers to the pharmaceutical companies, but the information about new approaches to among the first to discover these, but the information did not readily translate into useful new medicines. A basic limitation was the lack of knowledge of the physiological role of the new agents and their relationship, if any, to the etiology of a disease process. A company might have a handful of biologists working on a new target, but once the information was in the public domain, it was likely to be Investigated by hundreds of academic scientists, resulting in much more rapid expansion of knowledge. However, the

Measuring the value of public-private partnerships in the pharmaceutical sciences

Tom R. Denes, Arnold Snakes, Pieter Stolk, Antoine Juenke, Jon A. M. Raaijmakers, Michel Goldman, Daron A. Croommelin and Jorg W. Jansen

The declining productivity of drug research and development (R&D) as analysed in an article by Paul and colleagues (close to improving R&D productivity: the pharmaceutical industry’s grand challenge, Nature Rev. Drug Discov. 9, 203–214 (2010)) is of major concern for private and public stakeholders in the pharmaceutical industry, and in health care more broadly. One strategy to tackle this challenge has gained momentum in recent years is the establishment of precompetitive public-private partnerships (PPPs) to focus on issues that are too large for single organizations to effectively address alone, such as the development of biomarkers of drug toxicity. Examples of such partnerships include the Innovative Medicines Initiative in the

Enhancing ties between academia and industry to improve health

S Clara On Johnston 1, 2, Stephen I. Hauser 3 & Susan Desmond-Hellmann 4

Concerns about conflicts of interest have driven a wedge between academia and the pharmaceutical and devices industries. Although elevated concern for bias is justified, particularly when academics may affect drug sales, partnerships between industry and academia are essential to achieve the full promise of health improvement from the public investment in biomedical research. New models for such partnerships are developing and should be encouraged.

Rancor over conflicts of interest in health care and biomedical research has steadily increased in recent years. Instances of undisclosed financial ties between faculty at scale of individual physicians. In research, unstated sources of potential conflicts of interest also have been revealed, raising questions about the reliability of published findings. The need for greater transparency and control of potential conflicts is obvious. Academic institutions have responded to revelations of conflicts of interest by setting more explicit policies. These policies include requiring full public disclosure of all financial ties, limiting campus access of pharmaceutical company employees and setting strict limits on the types of ties and amounts of compensation. However, in the heat of apprehension and sometimes embarrassment, such policies may have unintended negative consequences, driving a wedge between academia and industry. The atmospheres of institutionalizing contacts with industry in fear of being called out as corrupt. The press has fueled this concern. We have seen many prominent experts appear on the pages of The New York Times for reasons other than glorious discoveries. An article in the Bmj listed 100 physicians not on the take, implying that others not similarly vetted should be avoided for commentary.

Although it is clear that new attitudes and policies about conflicts of interest are necessary, the importance of academic-industry collaboration in improving health cannot be denied. Academic researchers judge their relationships with industry to be very meaningful, and nonfinancial relationships may be as important as financial ones. There are many examples of discoveries made and patents

Drug discovery: new models for industry–academic partnerships

Cathy J. Tralau-Stewart, Colin A. Wyatt, Dominique E. Kley and Alex Ayad

Drug discovery is a complex process that involves the identification of potential drug targets, the design and synthesis of compounds to target those molecules, and the testing of those compounds in cell cultures, animal models, and eventually in human clinical trials. The traditional model of drug discovery, which involves a linear sequence of steps, is becoming increasingly inefficient and expensive. In recent years, there has been a growing recognition of the need to develop new models for drug discovery that are more flexible and scalable.

The four domains for value creation address the drivers of change, the role of new entrants (universities with specialised capabilities) and novel partnership models. If they are to be sustainable and deliver, these new models must be flexible and properly funded by industry or public funding, rewarding all partners for contributions. The introduction of an industry-like process and experienced management teams signalisation in discovery that benefits society by improving the value gained from publicly funded research.
Coopetion & Collaboration

1. **Among Companies**
   - Pre-competitive research

2. **Knowledge Chain**
   - Universities, Charities, Foundations, No profit
   - Start Up, Micropharma
Ten Pharmaceutical Companies Unite to Accelerate Development of New Medicines

New Non-Profit Organization to Speed Pharmaceutical R&D

PHILADELPHIA, Sept. 19, 2012 /PRNewswire/ -- Ten leading biopharmaceutical companies announced today that they have formed a non-profit organization to accelerate the development of new medicines. Abbott, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly and Company, GlaxoSmithKline, Johnson & Johnson, Pfizer, Genentech a member of the Roche Group, and Sanofi launched TransCelerate BioPharma Inc. ("TransCelerate"), the largest ever initiative of its kind, to identify and solve common drug development challenges with the end goals of improving the quality of clinical studies and bringing new medicines to patients faster.

Through participation in TransCelerate, each of the ten founding companies will combine financial and other resources, including personnel, to solve industry-wide challenges in a collaborative environment. Together, member companies have agreed to specific outcome-oriented objectives and established guidelines for sharing meaningful information and expertise to advance collaboration.

"There is widespread alignment among the heads of R&D at major pharmaceutical companies that there is a critical need to substantially increase the number of innovative new medicines, while eliminating inefficiencies that drive up R&D costs," said newly appointed acting CEO of TransCelerate BioPharma, Garry Neil, MD, Partner at Apple Tree Partners and formerly Corporate Vice President, Science & Technology, Johnson & Johnson. "Our mission at TransCelerate BioPharma is to work together across the global research and development community and share research and solutions that will simplify and accelerate the delivery of exciting new medicines for patients."

Members of TransCelerate have identified clinical study execution as the initiative's initial area of focus. Five projects have been selected by the group for funding and development, including: development of a shared user interface for investigator site portals, mutual recognition of study site qualification and training, development of risk-based site monitoring approach and standards, development of clinical data standards, and establishment of a comparator drug supply model.
TransCelerate BioPharma Inc.

Scope: identify and solve common drug development challenges with the end goals of improving the quality of clinical studies and bringing new medicines to patients faster.

Initial area of focus = clinical study execution

1. Development of a shared user interface for investigator site portals
2. Mutual recognition of study site qualification and training
3. Development of risk-based site monitoring approach and standards
4. Development of clinical data standards
5. Establishment of a comparator drug supply model

As shared solutions will be developed – will involve industry alliances (ex. Clinical Data Interchange Consortium, Critical Path Institute, Clinical trials Transformation Initiative), regulatory bodies (FDA, EMA) and CROs.
Coopetition & Collaboration

1. **Among Companies**
   - Pre-competitive research

2. **Knowledge Chain**
   - Academia, Charities, Foundations
   - Start Up, Micropharma
Modalities of Discovery – The “How”
Giant takes up fight against rare diseases

Catherine Boyle

Britain’s biggest drugs company has created a division to deal specifically with rare diseases, such as Huntington’s, Duchenne muscular dystrophy and hard-to-treat cancer.

The decision by GlaxoSmithKline marks an evolution in attitude by the world’s largest drugs groups. Many have ignored diseases that affect hundreds or thousands of patients a year, as they can be difficult to treat and

based Sanofi-Aventis is bidding $8.5 billion (£5.5 billion) for Genzyme, the world’s most successful developer of rare disease drugs, which changes more than $200,000 a year for Cerezyme, its Gaucher disease treatment.

Marc Dunoyer, global head of GSK Rare Diseases, said: “There is a very tight-knit community within rare diseases: there are small numbers of patients affected by these diseases and they are very often experts on their
Our mission

To improve the quality of human life by enabling people to do more, feel better, and live longer.