Management of Perioperative Hypertension in Non-Cardiac Surgery

Athanasios J. Manolis

Director Cardiology Department, Asklepeion Hospital, Athens, Greece
CV Risk at the Peri-operative Period
The Size of the Problem in the Europe

✓ 7 million major surgical procedures annually

✓ More than 150,000 patients suffered from major cardiac complication

✓ In the age group 75+, 12% of the women and 18% of the men have some degree of CVD

✓ By the year 2020, the elderly population will be increased by >50% and the annually conducted procedures by 25%
CV Risk at the Peri-Operative Period
The Size of the Problem

✓ Hypertension is a leading cause of death and disability in most Western societies

✓ Hypertension is the most frequent preoperative abnormality in surgical patients, with an overall prevalence of 20–25%.

✓ Preexisting hypertension is the most common medical reason for postponing surgery.

Peri-Operative Hypertension

Hypertension occurring in the pre-operative, intra-operative or post-operative period.

Importance:

- Increased risk of cardiovascular events
- Increased post-operative morbidity and mortality
- Association with end-organ damage
Pathophysiology of Perioperative HTN

- Increase SVR, increase preload
- Adrenergic stimulation (cardiac and neural)
- Baroreceptor denervation
- Rapid intravascular volume shifts
- Renin angiotensin activation
- Serotonergic overproduction
- Altered cardiac reflexes
Effects of Peri-Operative Hypertension

CVS effects:

✓ Increased BP → ↑ afterload & myocardial oxygen demand → myocardial oxygen supply and demand imbalance.

✓ Chronic ↑ BP → myocardial hypertrophy → myocardial oxygen supply and demand imbalance

✓ Hypertrophied myocardium → decreased compliance → abnormal diastolic filling
Surgical Risk for Cardiac Events: Pathophysiology

- Tissue Injury
 - Fluid Shifts
 - Tachycardia
 - Hypotension
 - Increased Surgical stress
 - Increased Myocardial Oxygen Demand

- Alteration in Balance Between Prothrombotic and Fibrinolytic Factors
 - Atherosclerotic Plaque Rapture
 - Hypercoagulability

ACS
Pre-Operative Evaluation of a Hypertensive Patient
Common Practice

- Pts with well-controlled EH are less likely to experience intraoperative BP lability and postoperative complications than pts with poorly controlled EH.
- The ideal circumstance is to normalize BP for several months prior to elective surgery.
- In pts with grade I-II EH, there is no evidence that delay in surgery in order to optimize therapy is beneficial.
In pts with grade III EH (BP> 180/110 mmHg) the potential benefits of delay surgery to optimize the pharmacological treatment should be weighted against the risk of delaying the surgical procedure.

In case of urgent surgery the patient should be treated with a parenteral drug acutely

Pts who are taking chronic antihypertensive treatment should continue taking their medications until the time of surgery
Initial Pre-operative Evaluation Of Hypertensive Patient

✓ History

✓ Physical examination

✓ Laboratory evaluation

✓ ECG
Surgical Risk for Cardiac Events

Type Of Surgery
- Low Risk
- Intermediate Risk
- High Risk

Circumstances
- Emergent
- Urgent
- Elective

Patient-specific factors
Co-Morbidities
Type Of Surgery and Estimated 30–day Cardiac Events Rates (Cardiac Death and MI)

<table>
<thead>
<tr>
<th>Surgical risk estimate (modified from Boersma et al.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-risk <1%</td>
</tr>
<tr>
<td>- Breast</td>
</tr>
<tr>
<td>- Dental</td>
</tr>
<tr>
<td>- Endocrine</td>
</tr>
<tr>
<td>- Eye</td>
</tr>
<tr>
<td>- Gynaecology</td>
</tr>
<tr>
<td>- Reconstructive</td>
</tr>
<tr>
<td>- Orthopaedic-minor</td>
</tr>
<tr>
<td>(knee surgery)</td>
</tr>
<tr>
<td>- Urologic – minor</td>
</tr>
<tr>
<td>Intermediate-risk 1-5%</td>
</tr>
<tr>
<td>- Abdominal</td>
</tr>
<tr>
<td>- Carotid</td>
</tr>
<tr>
<td>- Peripheral arterial angioplasty</td>
</tr>
<tr>
<td>- Endovascular aneurysm repair</td>
</tr>
<tr>
<td>- Head and neck surgery</td>
</tr>
<tr>
<td>- Neurological / orthopaedic – major (hip and spine surgery)</td>
</tr>
<tr>
<td>- Pulmonary renal/liver transplant</td>
</tr>
<tr>
<td>- Urologic - major</td>
</tr>
<tr>
<td>High-risk >5%</td>
</tr>
<tr>
<td>- Aortic and major vascular surgery</td>
</tr>
<tr>
<td>- Peripheral vascular surgery</td>
</tr>
</tbody>
</table>
AHA/ACC: Clinical Predictors of Increased Perioperative CV Risk (MI, HF, Death) (I)

✓ Major
Unstable coronary syndrome
✓ Acute or recent MI with evidence of important ischemic risk by clinical symptoms or noninvasive study
✓ Unstable or severe angina (Canadian Class III or IV)
Decompensated heart failure
Significant arrhythmias
High-grade atrioventricular block
✓ Symptomatic ventricular arrhythmias in the presence of underlying hear disease
✓ Supra ventricular arrhythmias with controlled ventricular rate
Severe valvular disease
AHA/ACC: Clinical Predictors of Increased Perioperative CV Risk (MI, HF, Death) (II)

✅ **Intermediate**
Mild angina pectoris (Canadian Class I or III)
Previous MI by history or pathological Q waves
Compensated or prior heart failure
Diabetes mellitus (particularly insulin-dependent)
Renal insufficiency

✅ **Minor**
Advanced age
Abnormal ECG (left ventricular hypertrophy, left bundle-branch block, ST-T abnormalities)
Rhythm other than sinus (e.g., atrial fibrillation)
Low functional capacity (e.g., inability to climb one flight or stairs with a bag of groceries)
History of stroke
Uncontrolled systemic hypertension

LEE Index

Six Major Predictors:

1. Ischemic Heart Disease
2. Cerebrovascular Disease
3. Heart Failure
4. Insulin Depended Diabetes Mellitus
5. Impaired Renal Function
6. High Risk Surgery

☑️ Each predictor contributes equally 1 point

<table>
<thead>
<tr>
<th>Score</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4%</td>
</tr>
<tr>
<td>1</td>
<td>0.9%</td>
</tr>
<tr>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>>3</td>
<td>11%</td>
</tr>
</tbody>
</table>
Assessment of Functional Capacity

1 MET
- Take care of yourself?
- Eat, dress, or use the toilet?
- Walk indoors around the house?
- Walk a block or 2 on level ground at 2 to 4 mph (3.2 to 4.8 kph)
- Do light work around the house like dusting or washing dishes?

4 METs
- Climb a flight of stairs or walk up a hill?
- Walk on level ground at 4 mph (6.4kph)?
- Run a short distance?
- Do heavy work around the house like scrubbing floors or lifting or moving heavy furniture?
- Participate in moderate recreational activities like golf, bowling, dancing, doubles tennis, or throwing a baseball or football?
- Participate in strenuous sports like swimming, singles tennis, football, basketball or skiing?

Greater than 10 METs
Value of Pre-operative Cardiac Evaluation and the Urgency of Surgery

✓ In emergency procedures (major trauma, raptured abdominal aortic aneurysm), cardiac evaluation will not influence the course of the intervention but may influence the management in the immediate post operative period.

✓ In non-emergent but urgent untreated surgical conditions (bowel obstruction), cardiac evaluation may influence the peri-operative measures taken to reduce the cardiac risk and the type of operation guiding to less invasive interventions but will not influence the decision to perform the intervention.
Hypertension And Non-cardiac Surgery
Clinical Algorithm Based On 5 Steps

1. Is the operation urgent?

2. Has the patients any active cardiac condition?

3. Which is the surgery-specific risk?

4. Which is the functional capacity of the patient?

5. Has the patient other clinical risk factors?
Cardiac Algorithm For Noncardiac Surgery

Step 1
Need for emergency noncardiac surgery?
- Yes (Class I, LOE C) → Operating room → postoperative risk stratification and risk Factor management
- No → Next

Step 2
Active cardiac conditions
- Yes (Class I, LOE B) → Evaluate and treat per ACC/AHA guidelines → Consider operating room
- No → Next

Step 3
Low risk surgery
- Yes (Class I, LOE B) → Proceed with planned surgery
- No → Next

Step 4
Functional capacity greater than or equal to 4 METs without symptoms
- Yes (Class IIa, LOE B) → Proceed with planned surgery
- No or unknown → Vascular surgery

Step 5
Vascular surgery
- 3 or more clinical risk factors → Consider testing if it will change management
- Intermediate risk surgery
- 1 or 2 clinical risk factors
- No clinical risk factors → Proceed with planned surgery
The last thing the patient see prior to surgery

“Don’t worry Mr. Jones: everything will be just fine…”
Perioperative Control of Hypertension
General Measures

- It is important to know if the patient had HBP before surgery and he was use to take antihypertensive treatment

- The effective pre-operative management of HBP is often the key to success for the control of HBP during the perioperative period. If preoperative BP > 180/110, the surgery should be deferred.

- HBP during surgery can be properly managed by analgesia and anesthesia and most of the modern anesthetic have a BP lowering effect

- Hypoxia and hypercapnia may increase BP by SNS activation

- All these issue should be considered and treated appropriately before any antihypertensive drug is given
BP Response During Anesthesia

- **During the induction of anesthesia**, sympathetic activation can cause the BP to rise by 20 - 30 mmHg and the HR to increase by 15 - 20 bpm in normotensive individuals. **These responses may be more pronounced in patients with untreated hypertension**

- **As the period of anesthesia progresses**, patients with preexisting hypertension are more likely to experience **intraoperative BP lability** (either hypotension or hypertension), which may lead to myocardial ischemia

- **During the immediate postoperative period** as patients recover from the effects of anesthesia, BP and HR slowly increase

- **There is no evidence of superiority of any specific anaesthetic agent in non-cardiac surgery**

Etiology of Intraoperative Hypertension

<table>
<thead>
<tr>
<th>Cause</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preexisting causes</td>
<td>Undiagnosed or poorly controlled hypertension, pregnancy induced hypertension.</td>
</tr>
<tr>
<td>Increased sympathetic tone</td>
<td>Inadequate analgesia, inadequate anesthesia, Hypoxemia, Airway manipulation like laryngoscopy, extubation etc, Hypercapnia</td>
</tr>
<tr>
<td>Drug overdose</td>
<td>Adrenaline, epinephrine, ketamine, and ergometrine</td>
</tr>
<tr>
<td>Others</td>
<td>Hypervolemia, Aortic cross clamping, Phaeochromocytoma, and malignant hyperthermia</td>
</tr>
</tbody>
</table>
An anesthesiologist is a doctor

“half asleep”

who keeps a patient

“half awake”.
ABPM: Pre and Perioperative Measurements in a Lady 83 years old
Properties of the Ideal Drug for Perioperative BP Control

✓ Easy to prepare, stable at ambient temperature and light
✓ Given by continuous intravenous infusion
✓ Compatible with range of diluents
✓ Easily titrable, with rapid onset and short duration of action
✓ Free of untoward or undesirable effects

Fenek R et Al., Drugs 2007;67(14):2023-204416
Properties of the Ideal Drug for Perioperative BP Control

- Free of effects on intracardiac conduction
- Mild reduction in myocardial contractility
- Vasodilator effects should be mostly confined to the arteriolar bed (i.e. resistance vessels)
- Vasodilator effects preferentially in vital organ beds, e.g. coronary, renal, splanchnic
- Effective treatment should maximise protective effects against complication of HTN, i.e. myocardial infarction

Fenek R et Al., Drugs 2007;67(14):2023-2044
Treatment Algorithm Of Perioperative Hypertension

- **BP<140/90 mmHg**
 - **No treatment**

- **BP≥140/90 mmHg**
 - **Presence of precipitating factors:** pain, hypotermia, urinary retention, hypervolemia
 - **HT patient:** if medication missed or half-life exceeded, Treat with antihypertensives (I.V.)
 - **BP≥140/90 mmHg**
 - **Major risk factors**
 - **Target organ damage**
 - **No**
 - **Yes**
 - **Treat with antihypertensives (I.V.)**

- **BP>180/110 mmHg**
 - **Hypertensive crisis**

From Critical Care Medicine, 2002
Preoperative β blockers:

✓ Controversial

✓ Proven to be beneficial in cardiac surgeries

✓ For non-cardiac surgeries good results in high-risk patients but not in low-risk patients (NEJM 1996, 2005)

✓ Associated with lesser incidences of perioperative ischemia

✓ Intraoperative hypotension, precipitation of asthmatic attack, major disadvantage
POISE Trial

✓ The biggest randomized controlled trial (N=8351)
✓ Patients with known CVD or >3 risk factors or major vascular surgery
 ✓ 100 mg metoprolol 2h prior operation
 ✓ 100 mg metoprolol 6h after operation
 ✓ 100 mg metoprolol maintenance dose 12h later

➢ 30% decrease in non-fatal MI
➢ 33% increase in total mortality
➢ 2 fold increase in strokes

Probably due to Metoprolol Induced Hypotension
Perioperative β-Blockers – POISE Trial

<table>
<thead>
<tr>
<th></th>
<th>Metoprolol (n=4174)</th>
<th>Placebo (n=4177)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary composite</td>
<td>5.8%</td>
<td>6.9%</td>
<td>.04</td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>3.6%</td>
<td>5.1%</td>
<td>.0007</td>
</tr>
<tr>
<td>Total mortality</td>
<td>3.1%</td>
<td>2.3%</td>
<td>.03</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.0%</td>
<td>0.5%</td>
<td>.005</td>
</tr>
<tr>
<td>Signif hypotension</td>
<td>15.0%</td>
<td>9.7%</td>
<td><.0001</td>
</tr>
<tr>
<td>Signif bradycardia</td>
<td>6.6%</td>
<td>2.4%</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Lancet 2008;371:1839-47
Risk Reduction using B-blockers

Lee index >3 → Significant decrease in mortality

Lee index = 1 or 2 → No significant difference

Lee index = 0 → Increase in mortality

Preoperative b-blocker withdrawal → Increase in mortality
Recommendations on ACE inhibitor use

For a hypertensive patient already receiving ACE inhibitors they should be discontinued 24 hours before surgery and resume after patient’s endovascular volume has been stabilized. When they are prescribed for heart failure their discontinuation at the preoperative phase should be examined more carefully.
Effects of Discontinuation of AIIA Before Surgery on Hemodynamic Events In Hypertensive Patients Chronically Treated With AIIA

<table>
<thead>
<tr>
<th></th>
<th>Group I (AIIA withdrawn)</th>
<th>Group II (AIIA given)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preinduction</td>
<td>159 ± 24</td>
<td>151 ± 26</td>
<td>NS</td>
</tr>
<tr>
<td>Postinduction</td>
<td>126 ± 33</td>
<td>109 ± 24</td>
<td>NS</td>
</tr>
<tr>
<td>Intubation</td>
<td>136 ± 34</td>
<td>121 ± 33</td>
<td>NS</td>
</tr>
<tr>
<td>Lowest value</td>
<td>159 ± 24</td>
<td>151 ± 26</td>
<td>NS</td>
</tr>
<tr>
<td>Episodes of hypotension (No.)</td>
<td>1 ± 1</td>
<td>2 ± 1</td>
<td><0.01</td>
</tr>
<tr>
<td>Patients with at least 1 episode (No.)</td>
<td>12</td>
<td>19</td>
<td><0.01</td>
</tr>
<tr>
<td>Duration of episodes (min)</td>
<td>3 ± 4</td>
<td>8 ± 7</td>
<td><0.01</td>
</tr>
<tr>
<td>Patients receiving ephedrine (No.)</td>
<td>12</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Dose of ephedrine (mg)</td>
<td>10 ± 10</td>
<td>15 ± 9</td>
<td>NS</td>
</tr>
<tr>
<td>Patients receiving neosynephrine</td>
<td>0</td>
<td>5</td>
<td><0.02</td>
</tr>
<tr>
<td>Dose of neosynephrine (µg)</td>
<td>0 ± 0</td>
<td>47 ± 86</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Bertrand M et Al., Anesth Analg 2001;92:26-30
Preoperative ACE inhibitors & AT-1 antagonists:

- Controversy regarding exaggerated hypotension
- As long as euvolumia, no hypotension

Pts. with preoperative BP elevations; Exaggerated intraoperative BP fluctuations & ECG evidence of ischemia.

Preop. Control of BP; ↓tendency to perioperative ischemia.
Recommendations On Calcium Channel Blockers

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class<sup>a</sup></th>
<th>Level<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>It is recommended that calcium channel blockers be continued during non-cardiac surgery in patients with Prinzmetal angina pectoris</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Heart rate-reducing calcium channel blockers, in particular diltiazem, may be considered before non-cardiac surgery in patients who have contra-indications to β-blockers</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>Routine use of calcium channel blockers to reduce the risk of perioperative cardiovascular complications is not recommended</td>
<td>III</td>
<td>C</td>
</tr>
</tbody>
</table>

^aClass of recommendation
^bLevel of evidence
Agents Used In The Management of Perioperative Hypertension, Preferred Conditions, and Dosing

<table>
<thead>
<tr>
<th>Agent</th>
<th>Conditions</th>
<th>Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enalaprilat</td>
<td>Congestive heart failure</td>
<td>IV injection of 1.25 mg over 5 min every 6 h, titrated by increments of 1.25 mg at 12 to 24 h intervals to a maximum of 5 mg every 6 h.</td>
</tr>
<tr>
<td>Esmolol</td>
<td>Acute myocardial ischemia</td>
<td>Loading dose of 500–1000 μg/kg over 1 min, followed by an infusion at 25 to 50 μg/kg/min, which may be increased by 25 μg/kg/min every 10 to 20 min until the desired response to a maximum of 300 μg/kg/min</td>
</tr>
<tr>
<td>Fenoldopam</td>
<td>Acute myocardial ischemia/Acute pulmonary edema/diastolic dysfunction, AIT/intracerebral bleed Acute renal failure/microangiopathic anemia Hypertensive encephalopathy Sympathetic crisis</td>
<td>An initial dose of 0.1 μg/kg/min, titrated by increments of 0.05 to 0.1 μg/kg/min to a maximum of 1.6 μg/kg/min.</td>
</tr>
</tbody>
</table>

Varon J et Al., Vascular Health and Risk Management 2008;4(3):615-627
Agents Used in The Management of Perioperative Hypertension, Preferred Conditions, and Dosing

<table>
<thead>
<tr>
<th>Agent</th>
<th>Conditions</th>
<th>Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labetalol</td>
<td>Acute aortic dissection
Acute myocardial ischemia
Acute ischemic stroke/ intracerebral bleed
Eclampsia/Preeclampsia Hypertensive encephalopathy</td>
<td>Initial bolus 20 mg, followed by boluses of 20–80 mg or an infusion starting at 1–2 mg/min and titrated up to until the desired hypotensive effect is achieved is particularly effective. Bolus injections of 1 to 2 mg/kg have been reported to produce precipitous falls in BP and should therefore be avoided; maximum cumulative dose of 300 mg over 24 h</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>Acute myocardial ischemia
Acute renal failure/microangiopathic anemia
Acute ischemic stroke/ intracerebral bleed Eclampsia/preeclampsia Hypertensive encephalopathy
Sympathetic crisis/cocaine overdose</td>
<td>5 mg/h; titrate to effect by increasing 2.5 mg/h every 5 min to a maximum of 15 mg/h.</td>
</tr>
<tr>
<td>Agent</td>
<td>Dosage</td>
<td>Onset</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Nitroprusside</td>
<td>0.5 – 10 ug/kg/min</td>
<td>30-60sec</td>
</tr>
<tr>
<td>Nitroglycerine</td>
<td>0.5 – 10 ug/kg/min</td>
<td>1 min</td>
</tr>
<tr>
<td>Esmolol</td>
<td>0.5mg/kg in 1 min</td>
<td>1 min</td>
</tr>
<tr>
<td></td>
<td>50 – 300 ug/kg/min infusion</td>
<td></td>
</tr>
<tr>
<td>Labetolol</td>
<td>5-20 mg</td>
<td>1-2mins</td>
</tr>
<tr>
<td>Propranalo</td>
<td>1-3 mg</td>
<td>1-2 mins</td>
</tr>
<tr>
<td>Trimethaphan</td>
<td>1-6 mg / min</td>
<td>1-3 mins</td>
</tr>
<tr>
<td>Fentolamine</td>
<td>1-5 mg</td>
<td>1 – 10 mins</td>
</tr>
<tr>
<td>Diazoxide</td>
<td>1-3 mg /kg slowly</td>
<td>2-10 mins</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>5-20 mg</td>
<td>5-20 mins</td>
</tr>
<tr>
<td>Nifidepine s/l</td>
<td>10 mg</td>
<td>5-10 mins</td>
</tr>
<tr>
<td>Methyl dopa</td>
<td>250 – 1000 mg</td>
<td>2-3 hrs</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>0.25 – 0.5 mg</td>
<td>1-5 mins</td>
</tr>
<tr>
<td>Enalapril</td>
<td>0.625 – 1 mg39</td>
<td>6-15 mins</td>
</tr>
<tr>
<td>Fenoldopam</td>
<td>0.1 – 1.6 ug/kg/min</td>
<td>5 mins</td>
</tr>
</tbody>
</table>
1. Hypertension is a very common preoperative abnormality in surgical patients and is accompanied by multiple other CV risk factors.

2. Preoperative evaluation is an opportunity to check and optimize the control of high BP.

3. The extent of diagnostic approach beyond history, physical examination, laboratory evaluation and ECG depends on:
 > The urgent of surgery and the surgery-specific risk
 > The presence of active cardiac condition and other risk factors
 > The functional capacity of the patient
Perioperative Management of HTN: Key Issues-1

- Some surgical procedures are associated with a high incidence of HTN: carotid endoarteriectomy, head and neck surgery, aortic and peripheral vascular surgery.

- BP levels > 180/110 mmHg should be controlled prior to surgery; for elective surgery (cardiac, vascular), effective BP control can be achieved over several days to weeks of outpatient treatment.

- Uncontrolled HTN before surgery is associated with wider fluctuations of BP during induction of anesthesia and intubation and may increase the risk for perioperative ischemic events.

- Surgical candidates with controlled HTN should maintain their medications until the time of surgery (except for ACEI and ARB’s), and therapy should be re-instituted as soon as possible postoperatively.

Mod. from JNC VII
If a patient develops intraoperative HTN, it is necessary to ascertain that other causes of HTN have been ruled out (hypercarbia, distended bladder, hypoxemia, hypertension).

In urgent situations, rapidly acting parenteral agents can be utilized to achieve BP control very rapidly.

Sudden intraoperative HTN is managed by the same parenteral antihypertensive agents that are utilized in the management of hypertensive emergencies.

HTN is very common in the early postoperative period and is related to increased sympathetic tone and vascular resistance that follows pain and increased intravascular volume, and may require parenteral drug and/or (if possible) the re-insititution of previous oral treatment.

Mod. from JNC VII
PERIOPERATIVE SCREENING AND MANAGEMENT OF HYPERTENSIVE PATIENTS

Athanasios J. Manolis¹, Serap Erdine², Claudio Borghi³, Kostas Tsioufis⁴

¹Department of Cardiology, Asklepeion Hospital, Athens, Greece
²Cardiology Department, Cerrahpasa School of Medicine, Istanbul University
³Dipartamento di Medicina Interna, dell' Invecchiamento e Malattie Nefrologiche, Universita degli studi di Bologna
⁴Cardiology Department, Hippokratio Hospital, University of Athens, Greece
Perioperative management of hypertension: A position paper of the Working Group “Hypertension and the Heart” of the European Society of Cardiology

Authors: Athanasios J. Manolis (Greece), Claudio Borghi (Italy), Jana Brguljan (Slovenia), Renata Cifkova (Czech Republic), Antonio Coca (Spain), Csaba Farsang (Hungary), Serap Erdine (Turkey), Antony Heagerty (Great Britain), Thomas Kahan (Sweden), Sverre E. Kjeldsen (Norway), Dragan Lovic (Serbia), Jean-Jacques Mourad (France), Gianfranco Parati (Italy), Roland E. Schmieder (Germany), Costas Thomopoulos (Greece), Philippe van de Borne (Belgium), Massimo Volpe (Italy), Costas Tsioufis (Greece)