II. Pathobiology of pulmonary arterial hypertension

Rubin M. Tuder, M. D.
Program in Translational Lung Research
Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
University of Colorado, School of Medicine
PVRI

European Cardiology Society, Nice, 2012
Pulmonary Hypertension: Future expectations
(Revisited) Key features of cancer

Emerging Hallmarks
- Deregulating cellular energetics
- Avoiding immune destruction
- Tumor-promoting inflammation

Enabling Characteristics
- Genome instability and mutation

Hanaham and Weinberg, Cell 2010
Variability of pulmonary vascular lesions

A

Coefficient of Variation (SD / Mean)

Wall Thick., Intima Thick., Media Thick.

B

Coefficient of Variation (SD / Mean)

Plex. Les.

Stacher et al., AJRCCM, 2012
Where do pulmonary vascular lesions occur?

- Number of pulmonary Arteries (17 orders)
 \[10^8\]

- Elastic (orders 17-10): 3,000
- Muscular (orders 9-5): 800,000
- Precapillary (orders 4-1; 25 um): 70 million
Predominance of PAH in women

Stacher et al., AJRCCM, 2012
17β estradiol

BMPRII

HPAH

SMC IPAH

CYP1B1

Sert Overexpressor

Overexpression in cancers

4 and 16-hydroxylation of estrogen

Dehydro epiandrosterone

White, MacLean. Circulation, 2012
CYP1B1 causes pulmonary hypertension

2,3,4,5-tetramethoxystilbene (TMS)

16-OH estrogen

CYP1B1

White, MacLean. Circulation, 2012
Morphometric parameters: control vs. PAH

Stacher et al., AJRCCM, 2012
Conceptual framework for severe PAH: selection of apoptosis resistance

Normal EC -> Trigger agent -> EC death

Clonal Growth

Shear Stress Viral factors Drugs

Key features of cancer

Hanaham and Weinberg, Cell 2010
(Revisited) Key features of cancer

Emerging Hallmarks

- Deregulating cellular energetics
- Avoiding immune destruction
- Tumor-promoting inflammation

Enabling Characteristics

Genome instability and mutation

Hanahan and Weinberg, Cell 2010
HIFs and Pulmonary Hypertension

Hypoxic

GLUT 1 & 3

HKII

HIF-1α

HIF-1β

CA IX

HCO₃⁻

CO₂

G-6-P

G
PH Endothelial Cells: Shift to a Glycolytic Pathway

PH ECs have less mitochondria

![Graph showing glucose consumption]

- **Normal**
- **PAH**
- **PAH + NO**

Cleveland Clinic: Serpil Erzurum, Weiling Xu, Suzy Comhair, Raed Dweik, Kewal Asosingh

Xu W et al. PNAS 2006
IPAH-ECs energetic switch:

- Decreased mitochondria

BMPRII: worse pulmonary vascular remodeling

Stacher et al., AJRCCM, 2012
Plexiform lesions

Stacher et al., AJRCCM, 2012
Morphometric parameters and pathological PAH subphenotypes: plx lesions

A

B

Stacher et al., AJRCCM, 2012
Role of EC APOPTOSIS in the genesis of severe PH SU5416+CH and MCT Models

Chronic hypoxia CH+ SU5416

Active Caspase 3/Vessel

- **Monocrotaline**

- **CH**
- **CH+SU5416**

Graphs showing changes in active caspase 3/vessel over time:
- D7, D14, D21, D42

Statistical significance:
- p<0.001

Graphs showing caspase positive/perimeter:
- Con, D14, D21, D30

Stewart et al. Faseb Journal, 2001

Zaiman A et al. AJRCCM, 2008
Role of EC APOPTOSIS in the genesis of severe PH SU5416+CH and MCT Models

SU5416+CH

N=12

N=14

N=5

Chronic Hypoxia

PAP (mmHg)

Control

Z-Asp

-CH 2

SU5416

Monocrotaline

P < 0.0003

P < 0.0005

Control

MCT

MCT

+Z-Asp

Stewart L. Faseb Journal 2001

Duncan Stewart
VEGF receptor blockade: SU5416+CH rat model of human PAH with endothelial cell proliferation

Human IPAH

Rat IPAH-like

Abe et al Circulation, 2010; courtesy: Ivan McMurtry
Schistosomiasis

Cercariae

Egg

S mansoni and *S japonicum*
200 million people affected by Schistosomiasis
Schistosomiasis-PAH: Pathology

Courtesy Prof. Zilton Andrade
Mouse model of Schisto-PH

- Purified ova
- Cercariae
- Infected mouse
- Worms

3 weeks

Graph showing RVSP (mmHg) with two groups: Unexposed and IPTV Eggs.
Th2 Peri-Egg Granulomas

- Myocyte/Myofibrocyte
- Macrophage
- Eosinophil

- IL-4Rα
- IL-13Rα1
- IL-13Rα2

- STAT-6
- Adenosine
- VEGF
- TGF-β1
- MMPs
- UPA
- Chemokines
- CCR2

- Mucus
- Blood vessel alterations
- Fibrosis
- Inflammation

- αSM-actin
- MAC-3
- MBP

Wild-Type
Schisto-PH: combined remodeling and vasoconstriction (Rho kinase)
Lack of role for selective loss of either Smad2 or Smad 3 in hypoxic PH

Hypoxia: 50% 3 weeks

TGF-β → RII → Smad3

Smad2

+/−

Graphs showing RVSP (mmHg)

S3+/+ Nx, S3+/− Nx, S3+/+ Hx, S3+/− Hx

S2+/+ Nx, S2+/− Nx, S2+/+ Hx, S2+/− Hx
(Revisited) Key features of cancer

- Deregulating cellular energetics
- Avoiding immune destruction
- Tumor-promoting inflammation
- Genome instability and mutation
- Emerging hallmarks

Hanaham and Weinberg, Cell 2010

17β estradiol → CYP1B1
Acknowledgments

Univ. Colorado: Elvira Stacher (Univ. of Graz), Brian Graham, James Hunt, Aneta Gandjeva, Carlyne Cool, Steve Groshong

University of Michigan (DTC): Valerie McLaughlin, Marsha Jessep

Univ. Alabama: William Grizzle

PHBI:
Transplant sites: Alleghene University of Medical Sciences (PI: Raymond L. Benza, M.D.); Baylor College of Medicine (George Noon, M.D.); Cleveland Clinic (PI: Serpil Erzurum, M.D.); Duke University (PI: Pang-Chieh Jerry Eu, M.D.); Stanford University-UCSF (PI:: Marlene Rabinovitch, M.D.); University of Alabama (PI: Keith Wille, M.D.; prior PI: Raymond L. Benza, M.D.); University of California, San Diego (PI: Patricia Thistlethwaite, M.D., Ph.D); Vanderbilt University (Barbara Meyrick, Ph.D.)

CMREF