Myocarditis and dilated cardiomyopathy

Diagnosis and management

Stephane Heymans
Dep. of Cardiology, Maastricht University Medical Centre
• Viral myocarditis
• Dilated cardiomyopathy
• Diagnosis
• Treatment
What is viral myocarditis?

“Sleeping” viruses \rightarrow Injury

Δ Immunogenetic background

Δ Environment
 • Additional virus
 • Illness

Herpesvirus
What is a viral myocarditis... cough of the heart!

- Herpesvirus
- Parvovirus
- Epstein BV
- Enterovirus

Δ Immunogenetic background

Δ Environment
 - Additional virus
 - Heart failure
Virus persistence 6 months after acute myocarditis relates to heart failure

Figure 1

- Virus elimination (n=64)
- Virus persistence (n=108)

% change in EF

n=28 n=5 n=14 n=8 n=9 n=28 n=9 n=49 n=10 n=12

Follow-up 6.8 months

Kuhl, Circulation 2005
Viral myocarditis

Parvovirus, Enteroviruses, Adenovirus, EBV, HHV6

Asymptomatic

Cough of the heart

Acute myocarditis

Idiopathic (dilated) CMP

Genetic background
Environment

20%
• Viral myocarditis
• **Dilated cardiomyopathy**
• Diagnosis
• Treatment
Idiopathic cardiomyopathies (DCM)
Non-ischemic, non-valvular, non-hypertrophic CMPs

Gene mutations
Metabolic Δ

Structural Δ

Inflammatory Δ

Viruses
Idiopathic cardiomyopathies (DCM)
Non-ischemic, non-valvular, non-hypertrophic CMPs

Gene mutations → Structural Δ

Metabolic Δ → Inflammatory Δ

Viruses

Immunogenetic background
Increased microRNA-155 expression during Coxsackievirus-B3 induced myocarditis

MicroRNA-array analysis in mice and human

- C3h=susceptible to inflammation
- B6= resistant to inflammation

In situ hybridisation of miR-155

Infiltrate

Healthy myocardium
LNA-antimiRNA-155 reduces acute cardiac inflammation during viral myocarditis

Locked Nucleic Acid (LNA) anti-miR-155, 25mg/kg iv.

day 0 CVB3

day 1 LNA#1

day 4 LNA#2

day 6 LNA#3

day 7 sacrifice

Cardiac miR-155 levels

40% KD

p=0.0002
LNA-antimiRNA-155 reduces acute cardiac inflammation during viral myocarditis
Idiopathic cardiomyopathies (DCM)
Non-ischemic, non-valvular, non-hypertrophic CMPs

Gene mutations
Metabolic Δ

Structural Δ

Inflammatory Δ

Viruses

DCM
Gene mutations in idiopathic dilated cardiomyopathy

GENES

- Lamin A/C
- δ-sarcoglycan
- Dystrophin
- Desmin
- Vinculin
- Titin
- Troponin-T
- α-tropomyosin
- β-myosin heavy chain
- Actin
- Phospholamban
- Mitochondrial DNA mutations

Fatkin, et al. NEJM 1999
The 80 % gap of DCM

- Hypertrophic CMP & gene mutation
 - 80 (-90 %) % with proven mutation
 - 10-20 % gap

- Dilated CMP & gene mutations
 - 20 -(50?) % proven mutations
 - 80 % gap → cause ??
Idiopathic cardiomyopathies (DCM)
Non-ischemic, non-valvular, non-hypertrophic CMPs

Gene mutations
Metabolic Δ
Structural Δ
Inflammatory Δ
Viruses

DCM
Patient, female, 34 years old

- Becker disease: dystrophin abnormality
 - Normal cardiac function 3 months before
- Flue like symptoms, followed by severe dyspnoe
 - Echocardiography:
 - Severe cardiac dysfunction (EF 15 %)
 - Cardiac dilatation (EDD 68 mm)
 - Cardiac biopsies: Epstein Barr virus (820 copies/µg DNA)
Link between hereditary and viral cardiomyopathies

- Viral protease cleaves dystrophin
 - disruption of the dystrophin–glycoprotein complex
 - similar to hereditary abnormalities in dystrophin expression
Patient, male, 34 years old
Cardiac biopsies: EBV↑ + inflammation↑

CD45b (T-lymphocytes)

Dystrophin-1

Dystrophin-2

Dystrophin-3
Viral cardiac infection and genetic predisposition

- Dystrophin abnormality
- Severe cardiac dilatation and failure
- Viral infection in the heart
Idiopathic cardiomyopathies (DCM)

Non-ischemic, non-valvular, non-hypertrophic CMPs

Viruses → Structural Δ → Gene mutations → Metabolic Δ → Inflammatory Δ → DCM
Autoimmune diseases

• Cardiac involvement in systemic diseases:
 – Churg-Strauss: 30–60 %
 – Sarcoidosis: 5–30 %
 – Other systemic diseases: 2–20 %

• History: systemic complaints

• Blood: inflammation & T-cell activation
 – Neopterine
 – Soluble-IL2 receptor
 – ANF and CRP
Female 32 yr

• Prior medical history: none

• Presented to the first heart aid with chest pains
 – Flu-like symptoms 2 weeks prior to admission
 – Progressive position dependant chest pain
Female, 32 y

- Physical: no fever, HD stable
- Biochemistry:
 - TnT 0.67µg/L,
 - CRP 136 mg/L, WBC 19.10^9/L, soluble IL2-rec↑↑
- Echocardiogram:
 - slightly depressed LV function (EF 51%),
 - no pericardial effusion,
 - normal left ventricular dimensions
• T2-weighted: increased signal intensity anteriorly and laterally of the left ventricle
• Late enhancement: focal transmural hyperenhancement basal-lateral of the left ventricle
Female, 32y

- LV dysfunction deteriorated
- Endomyocardial biopsies:
 - Viral PCR:
 - Parvovirus B19 pos (2184 copies mcg/DNA)
 - EBV, HHV6, ADV and EV negative
 - Histology
 - Increased CD3/CD45 positive lymphocytes
Female, 32 years

- Despite aggressive immunomodulatory (IVIG 2gr/kg) and immunosuppressive (prednisone 50mg/day iv) therapy
- Cardiac function declined
- Ultimately requiring a left ventricular assist device → cardiac transplantation
Cardiac biopsies at LVAD
Cardiac biopsies at LVAD

- Extensive infiltration (lymphocytes and eosinophiles)
- Damaged myocytes (myocyte necroses)
- Giant cells
Idiopathic cardiomyopathies (DCM)
Non-ischemic, non-valvular, non-hypertrophic CMPs

Gene mutations
Metabolic Δ

Structural Δ

DCM

Viruses
Inflammatory Δ
Metabolic and toxic causes

• Metabolic triggers
 – Metabolic syndrome: obesity /diabetes/ hypertension
 – Fabry disease

• Toxic triggers:
 – Ethyl (reversible)
 – Drugs (cocaine)
 – Chemotherapy (anthracyclines)
Male, 45 years

- Idiopathic CMP
 - Slight hypertrophy
 - EF 35%
 - EDD 58 mm
- Non-sustained VT
- Cardiac oedema
- Minor renal dysfunction

CMR: T2 and LE
Male, 45 years

- Idiopathic CMP
 - Slight hypertrophy
 - EF 35 %
 - EDD 58 mm
- Non-sustained VT
- Oedema at MRI
- Cardiac biopsies:
 - Motten eaten myocytes
 - Sfingolipid accumulation
- \(\alpha \)-galactosidase deficiency

CMR: T2 and LE

Cardiac biopsies
• Viral myocarditis
• Dilated cardiomyopathy
• **Diagnosis**
• Treatment
How to diagnose...

- History
- Signs and symptoms
- Blood studies
 - ECG
 - Echo
 - CMR
- Biopsies
Myocarditis

• History
 – Often flu-like symptoms days-weeks prior to cardiac symptoms

• Signs and symptoms
 – Diverse: from malaise, atypical chest discomfort, heart failure to idiopathic ventricular arrhythmias.
History in DCM

- **Systemic symptoms (inflammation/metabolic)**
 - Joints, skin, gastro-intestinal, fatigue
- **Familial history (genetic?)**
 - Premature heart disease, sudden death, neurological diseases
- **Toxic causes**
 - Drugs, alcohol, chemotherapy
- **Metabolic**
 - Diabetes, hypertension, obesity
How to diagnose…

- History
- Signs and symptoms
- ECG
- Blood studies
- Echo
- CMR
- Biopsies
How to diagnose...

- History
- Signs and symptoms
- ECG
- Blood studies
- Echo
- CMR
- Biopsies
CMR in acute myocarditis

- **Acuut**
 - T2W: (+) oedema
 - LE: (+) injury
 - Focal, subbepicardiaal
 - posterolateraal

- **Follow-up**
 - T2W: (-)
 - LE: (+) injury/fibrosis

De Cobelli et al. *JACC* 2006;47: 1649-54
CMR in DCM

• Ischemic
 - Subendocardial/transmural LE

• DCM, non-ischemic/valvular
 - Midwall or subepicardial LE
How to diagnose…

• History
• Signs and symptoms
• ECG
• Blood studies
• Echo
• CMR
• Biopsies
Biopsies

Death of Dallas criteria

(Baughman et al, Circulation, Jan 2006: p593)

- Pro: standardised
- Contra:
 - Poor sensitivity
 - Poor specificity

Virus: diffuse
Inflammation: focal
Biopsies
Quantitative RNA/DNA

- **Viral rt-PCR in biopsies**
 - **Pro:**
 - High sensitivity
 - High specificity
 - **Contra:**
 - Invasive (biopsies)

Enterovirus (coxsackie, echovirus), Parvovirus B19, Adenovirus, EBV, HHV6

Virus: diffuse
Inflammation: focal
Virus presence in myocarditis vs. idiopathic cardiomyopathy

Myocarditis
(n=20/35)

- Virus negatief
- PVB19
- PVB19 + HHV6
- PVB19 + EBV
- PVB19 + EV + EBV
- PVB19 + HHV6 + EV

Idiopathic CMP
(n=315)

- Virus negatief
- PVB19
- PVB19 + HHV6
- PVB19 + EBV
- EV + EBV
- HH6 + EBV
- PVB19 + EV + EBV
Inflammatory cell staining in biopsies

- Increased inflammation?
 - Systemic disease (history ?, blood ?)
 - Virus presence?

CD45-leukocytes > 12/mm²
CD3-lymphocytes > 7/mm²
• Viral myocarditis
• Dilated cardiomyopathy
• Diagnosis
• Treatment
Treatment: idiopathic cardiomyopathy/myocarditis?

Cardiac biopsies

- **Virus positive (60%)**
 - Treat the virus?
 - IV IgG
 - Other
 - Inflammation (T-lymph.)
 - Systemic disease

- **Virus negative (40%)**
 - Anti-inflammatory therapy?
 - Cortisol/Azathioprine
 - Endoxan/tacrolimus
 - Other
 - No inflammation
 - No evidence based therapy
Intravenous immunoglobulins for the treatment of PVB19-related CMP

- Randomized single centre clinical trial since 2010 (n=54)
- Based upon pilot data:
 - 2g/kg iv immunoglobulins
 - DCM, EF<45 %
 - > 6 months duration/standard HF therapy
 - PVB19> 250 copies/µg DNA

Dennert et al. AVT 2010
Urgent need for refined diagnosis/treatment!

- International diagnostic protocols & databases
- New clinical trials

Gene mutations

Structural Δ

Metabolic Δ

Viruses

Inflammatory Δ
Acknowledgements

• Maastricht University, HFRC, CARIM
 - A. Papageourgiou
 - B. Schroen
 - P. Carai
 - M. Corsten
 - R. Dennert
 - M. de Vrie
 - S. Jochems
 - M. Swinnen
 - L. Van Aelst
 - G. Van Almen
 - D. Vanhoutte
 - R. Van Leeuwen
 - W. Verhesen
• Imperial college, London
 - S. Cook
• Amsterdam, AMC
 - Y. Pinto
 - E. Creemers
• Berlin, Charité
 - D. Westermann
 - W. Poller
 - C. Tschöpe
 - HP Schultheiss
• Amsterdam, VUM
 - W. Paulus
 - Y. Vandervelde
• Santaris Pharma
 - S. Kauppinen

2005 B082
2007 B036
2008 B012
2009 B037
2008046
2009037

Funded by the Netherlands Heart Foundation
Gezond bindweefsel belet ontsteking!

- Functie van het hart
- Cement in het hart
- Belet ontsteking!!
 - Mechanische barrière
 - Cytokines
Afweersysteem in hart: bindweefsel!!

AFBRAAK
Metalloproteïnasen

- Afbraak van bindweefsel
- Verhoogde ontsteking

OPBOUW
Thrombospondins/SPARC

- Verstevigt het bindweefsel
- Verminderde ontsteking

Heymans, Circulation. 2006;114:565
Schellings J. Exp. Med. 2009
MMP-inhibition

- **Myocardial infarction**
 - Inflammation blunted
 - Hypertrophy reduced
 - Cardiac rupture prevented
 - Cardiac dilatation reduced

- **Hypertension**
 - LV dilatation reduced
 - LV function preserved

Heymans S., *Circulation*, 2005
Inhibite van collageen afbreek voorkomt virale schade door ontsteking

Number of inflammatory foci per grid
Control: 10 ± 1.2
MMP-inhibition: 3.9 ± 1.3
Bench to bedside:
Toegenomen MMP-9 in een patiënt met virale myocarditis

- Male, 20 years, acute fulminant myocarditis
- Echo: EF 20 %, EDD 64 mm
- Cardiac biopsies: Epstein-Barr virus: 1750 copies/µg