While hiking in the Swiss Alps, Prof T. Pexieder tragically lost his life on October 28th, 1995.

Professor Tomas Pexieder was born in Prague on the 6.6.1941, where he undertook his undergraduate studies and received his M. D. in 1965 from Charles University. During his last 3 years at medical school, he also dedicated himself to research at the Institute of Anatomy and published his first paper on adipose vascularisation in rats [1]. From 1962 to 1965, he worked with Dr Z. Rychter at the Institute of Anatomy, where he investigated the development of aortic arches in the chick embryo. After three years at the Institute of Embryology, he moved to the Lund University (Sweden) for one year before joining the Institute of Histology and Embryology in Lausanne in 1969, where he became associated professor in 1977. In August 1995, he became co-chairman of the Institute “ad interim” until his death.

As one of the pioneers of modern cardiac embryology, Tomas Pexieder attempted to link molecular and cellular events to structure changes of the developing heart. He focused his attention on programmed cell death (now called apoptosis) 25 years before the present large interest in the field [2]. For his research, Tomas Pexieder used the tools of modern investigating morphology, including precise fixation techniques, transmission electron microscopy, scanning electron microscopy, immunohistochemistry and in situ hybridization [3-14]. His publications were not only scientifically accurate, but also artistically composed. In the process of his morphologic studies, Tomas Pexieder reorganized the conflicting and confusing terminology of embryonic cardiac morphology [15-17].

He summarized his particular analysis of the conotruncus in a masterful recent paper [18], explaining conotruncal defects in the Keeshond dog [19, 20]. He further pioneered the investigation of cardiac phenotype in the trisomy mouse [21-24] and was involved in defining the teratogen effect of trimethadione in the rat and of retinoic acid in the mouse. More recently he became fascinated by the effect of RXRα gene knock-out (in collaboration with K. R. Chien, P. J. Gruber et al., La Jolla, USA). His comparative pathogenetic studies lead him to bring new concepts about the pathogenesis of cardiac malformations. He recently attacked the molecular mechanisms of cardiac pathogenesis. His sense of excellence and competence led him to create a “developmental cardiology network” with the above mentioned investigators as well as Drs B. Keller, E. B. Clark (Rochester, USA), R. R. Markwald (Charleston, USA), J. C. Prados (Madrid), P. S. Jouk (Grenoble, France), I. Ostadalova, V. Pelouch, M. Peterka (Czech Republic) and Y. Shimada (Chiba, Japan).

In the course of the years Tomas Pexieder became one of the most prominent forces in the research of cardiovascular development and congenital heart disease keeping this position for more than a quarter century. His contributions ranged from the pioneering description of programmed cell death in the developing heart through nomenclature descrip-
tive morphology and taxonomy, molecular and cellular biology and epidemiology of congenital cardiovascular malformations.

The interest of T. Pexieder in cardiovascular research was not the only one in the life of this eminent embryologist. His fascination for the development of the human being led him to collaborate with his obstetrician friend Dr. P. Janecek in vitro fertilization and the first babies born from their successful work are now 10 years old.

In 1980, Tomas expanded his scientific repertoire to include clinical epidemiology, organizing and leading the Eurocat analysis of congenital cardiovascular malformations. He assessed the role of teratogens in the pathogenesis of congenital heart defects and provided consultation to physicians through his teratogen hotline.

Tomas Pexieder’s huge work is present in 3 monographs, 31 chapters in monographs, 65 papers and 104 abstracts. Prof. Pexieder was also one of the editors of the European Journal of Morphology. Particularly interested in forming scientific relief, T. Pexieder was a mentor of 16 M. D. theses.

In addition to being an eminent embryologist, he taught embryology and histology to medical students, who respected his vast knowledge. Tomas Pexieder demanded a high quality work from his collaborators, a like from himself. Despite the many tasks he was involved in, he always took time for anyone seeking help both at professional and personal level. T. Pexieder was not only an eminent scientist, a mentor, a friend, but also a man with the highest human qualities.

M. Vuillemin, C. Reymond, and R. Krstic

Most important publications of T. Pexieder


Correspondence to:
R. Krstic, Histologisch-Embryologisches Institut, Universität Lausanne, rue du Bugnon 9, CH-1005 Lausanne, Schweiz.

199