An Overview of the Different Aspects of a Clinical Trial

Gianluigi Savarese, MD PhD, FHFA, FESC
Cardiology, Department of Medicine – Karolinska Institutet - Stockholm – Sweden
Heart and Vascular Team – Karolinska University Hospital – Stockholm - Sweden

12-13 December, Stockholm, Sweden
This course is supported by AMGEN and Novartis Pharma AG in the form of an educational grant. The scientific programme has not been influenced in any way by its sponsor.
Hierarchy in Science

- Clinical Practice Guidelines / Health Technology Assessment
- Systematic Review / Meta-Analysis
- Randomized Controlled Trial
- Controlled Clinical Study
- Retrospective / Prospective Cohort
- Case Report / Case Series
- Expert Opinion

BE BRAVE.
Even if you’re not, pretend to be.
Hierarchy in Science

- Clinical Practice Guidelines / Health Technology Assessment
- Systematic Review Meta-Analysis
- Randomized Controlled Trial
- Controlled Clinical Study
- Retrospective / Prospective Cohort
- Case Report / Case Series
- Expert Opinion
Case reports

- Identify needs – hypothesis generating
- Identify new drug side effects but also potential novel uses
- Identify rare diseases and rare manifestations of diseases
- Important educational role
- Highlight extremely unusual and novel findings
- No causality – Associations may have other explanations
Case reports

THE LOWERST LEVEL OF EVIDENCE OR MAYBE THE FIRST LINE OF EVIDENCE
Case reports

THE LOWERST LEVEL OF EVIDENCE OR MAYBE THE FIRST LINE OF EVIDENCE
Hierarchy in Science

- Clinical Practice Guidelines / Health Technology Assessment
- Systematic Review / Meta-Analysis
- Randomized Controlled Trial
- Controlled Clinical Study
- Retrospective / Prospective Cohort
- Case Report / Case Series
- Expert Opinion
Observational studies

To test the association of a risk factor with an outcome

- Cohort study
- Case-control study
- Cross-sectional study
Cohort studies

Study begins here

Measure exposure and confounder variables

Study population

Factor present

Factor absent

Future

Present

https://lo.unisa.edu.au

time

no disease
disease
no disease
disease

https://lo.unisa.edu.au
Cohort studies

Merits:

• There is temporal relationship between exposure and outcome

• Investigate several outcomes for each exposure

• It is possible to perform matching limiting confounders role

• Easier and cheaper than a RCT

• Good to measure incidence of an outcome

Limitations:

• Expensive

• Outcome could take time to occur

• Definition of outcome/exposure can change over the time

• No randomization

• Blinding/masking
Case-control studies

<table>
<thead>
<tr>
<th>Factor Present</th>
<th>Cases (disease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Absent</td>
<td>Study population</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor Present</th>
<th>Controls (no disease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Absent</td>
<td></td>
</tr>
</tbody>
</table>

Study begins here

https://lo.unisa.edu.au
Case-control studies

• **Assumption:** non-cases are representative of the source population of cases.

Merits:

• Suitable to investigate rare diseases/outcomes

• Can be not really expensive

Limitations:

• Not suitable for calculating frequency measures

• Not appropriate for rare exposures

• Selection and recall biases
Cross-sectional studies

Study only exists at this point in time

Study population

No Disease

factor present

factor absent

Disease

factor present

factor absent

https://lo.unisa.edu.au
Cross-sectional studies

Merits:

• Quick
• Cheap
• Study of several diseases / exposures at the same time
• Assess the prevalence of a disease
• Public health planning

Limitations:

• Temporal ambiguity
• Possible measurement error
• Not suitable for rare conditions
• Survivor bias
Causality: cause-effect relationship?

Storks deliver babies

Storks Deliver Babies (p. 0.008), Matthews, R, Teaching Statistics. Volume 22, Number 2, Summer 2000
Causality: cause-effect relationship?

land area

storks

birth rate
Confounders

positive confounding: the effect seems stronger
negative confounding: the effect seems weaker
Causality: cause-effect relationship?

Drink a lot of strong coffee

Rohit S Loomba et al. Circulation. 2012; 126: A14459
Causality: cause-effect relationship?

- Smoking and other confounder
- Coffee
- Cardiovascular mortality

Rohit S Loomba et al. Circulation. 2012; 126: A14459
ADJUSTED FOR KNOWN CONFOUNDERS BUT NOT FOR UNKNOWN OR UNMEASURED CONFOUNDERS
Interventional studies
Hierarchy in Science

- Clinical Practice Guidelines / Health Technology Assessment
- Systematic Review Meta-Analysis
- Randomized Controlled Trial
- Controlled Clinical Study
- Retrospective / Prospective Cohort
- Case Report / Case Series
- Expert Opinion

Strongest Evidence

Study Level Data

Subject Level Data

Weakest Evidence
Interventional studies: RCTs are the gold standard

Randomization in interventional trial: avoids all confounders
Adjustment for confounders in observational trial: avoids known confounders
19% eligible in a real-world population
Figure 1. Screening, Randomization, and Follow-up.
The median duration of the valsartan run-in phase was 15 days (interquartile range, 12 to 22). One patient completed the valsartan run-in phase and underwent randomization without entering the sacubitril–valsartan run-in phase. The median duration of the sacubitril–valsartan run-in phase was 19 days (interquartile range, 15 to 23). One patient completed screening and entered the sacubitril–valsartan run-in phase without having entered the valsartan run-in phase.
Interventional studies: RCTs are the gold standard

Is the study population representative of the source population → Can results be translated to the general population of patients?

Strict
- well defined study population makes the effect more predictable (internal validity)
- safer due to exclusion of high-risk patients
- difficult to recruit patients, increasing cost, time of recruitment and risk of the failure of the study

Broad
- increases external validity
- facilitates recruitment of patients

Already selection of study site (e.g. tertiary centre) restricts patient selection!
Meta-analyses

A quantitative statistical analysis of several separate but similar experiments or studies in order to test the pooled data for statistical significance.

Why a meta-analysis?

• To increase power

• To improve precision

• To answer questions not posed by individual studies and increase generalizability

• To settle controversies arising from apparently conflicting studies or to generate new hypotheses
Hierarchy in Science

- Clinical Practice Guidelines / Health Technology Assessment
- Systematic Review / Meta-Analysis
- Randomized Controlled Trial
- Controlled Clinical Study
- Retrospective / Prospective Cohort
- Case Report / Case Series
- Expert Opinion

Strongest Evidence:
Study Level Data

Weakest Evidence:
Subject Level Data
Registry

- Collects uniform data (clinical, lab, etc)
- Evaluate specified outcomes for a population defined by a particular disease, condition, or exposure

Disease Registry: Includes patients with the disease regardless of drug or device exposure

Product Registry: Includes subjects receiving the drug or device regardless of indication

In principle, no testing of research hypothesis (i.e. cohort study)

Registry: key words

• **Cohort study** – enrolls subjects with something in common (same disease, same treatment, etc.) who are followed up over time.

• **Real-world** - representative of real world patient characteristics (less inclusion and exclusion criteria than in RCTs)

• **Non-interventional**
Non-interventional studies

- the **investigational medicinal products** are used in accordance with the terms of the **marketing authorization** and the **normal clinical practice** of the state concerned;

- the assignment of the subject to a particular therapeutic strategy is **NOT decided in advance**;

- the decision to prescribe the investigational medicinal products is not taken together with the decision to include the subject in the clinical study;

- diagnostic or monitoring procedures in addition to normal clinical practice are not applied to the subjects.
Registries supports RCTs for:

Phenotyping groups of patients to be enrolled in trials

A comprehensive population-based characterization of heart failure with mid-range ejection fraction

Angela S. Koh¹,², Wan Ting Tay³, Tiew Hwa Katherine Teng¹,², Ola Yedin⁴, Linda Bremner⁵, Ulf Dahlof⁶, Gianluigi Savarese⁷, Carolyn S.P. Lam¹,⁸,⁹, and Lars H. Lund⁷,⁸

Intermediate

Resembles HFrEF

Resembles HFpEF
Registries supports RCTs for:

Selecting outcomes and inclusion/exclusion criteria

Reductions in NT-proBNP → better prognosis in EF≥40%

NT-proBNP decreases
HR: 0.46

Savarese et al.
Circ HF 2016

Relationship between NT-proBNP and CV/non-CV events

Savarese et al. JACC HF 2018
Registries for:
Exploring subgroups which have been previously neglected

Association between renin–angiotensin system inhibitor use and mortality/morbidity in elderly patients with heart failure with reduced ejection fraction: a prospective propensity score-matched cohort study

Gianluigi Savarese, Ulf Dahlström, Peter Vasko, Bertram Pitt, and Lars H. Lund

Age>80 years
RASi 80%

HR 0.78 (0.72 – 0.86)
1-year ARR: 11%, NNT: 9

Age≤80 years
RASi 94%

HR 0.81 (0.71 – 0.91)
1-year ARR: 6%, NNT: 17
Registries for:
Fostering implementation of treatments in clinical practice

Risk-adjusted use of therapy over time

- B-blocker RAS: ~83 → 93%
- Aldo antagonist: ~34 → 28%
- ICD CRT: ~2 → 4%
- ~1 → 3%
Registries for:
Testing effectiveness
Registries for:
Post-marketing surveillance

- Evaluate short/long-term effectiveness (day-to-day circumstances)
- Measure/monitor short/long-term safety and tolerability
- Measure and/or improve quality of care
Registries for:
Randomized registry based controlled trials

RCT
- Randomized evidence
- Complex regulatory requirements
- Collection of non-essential data
- For-profit CROs
- Multiple ethics approvals
- Complex consent forms
- Many unknowns for power calculation
- In-feasible: (pre)-screening is manual, inefficient and unpredictable
- Enrolment slow
- Trial population unpredictable
- Outcomes assessment manual, inefficient
- Selective → not generalizable to real world
- Expensive to conduct: in HF: 6,000 patients, >$200M, ~$50,000 per patient
- Industry must recoup drug development and trial costs
 → Delivers novel patented expensive therapy: e.g. sacubitril/valsartan: $5-15 per day

But:

RRCT
- Simplified regulatory procedures
- Focus on essential baseline and outcome data
- Non-profit AROs
- Single ethics approval
- Simplified consent forms
- For power calculation: know eligible sample and event rates
- Feasible: Have lists of existing and know n new eligible patients
- (Pre)-screening is automated, efficient and predictable
- Outcomes assessment automatic
- Non-selective: both efficacy and effectiveness
- Inexpensive to conduct: ~$5M = ~$1,000 per patient
- Non-selective → real world evidence
- Promotes adoption of evidence into practice
- Delivers new use of existing drug: generic HF drug: e.g. spironolactone 10 cents per day

Registry
- Efficient enrolment integrated in real-world health care
- Real-world generalizable descriptive and outcomes data
- Epidemiological characterization
- Utilization of evidence based therapy
- Quality reporting, benchmarking
- Quality improvement
- Equality of care
- Risk markers
- Comparative outcomes → Hypothesis generating
- Efficient
- Inexpensive

But:

Lack of randomization → NOT comparative effectiveness

Many study designs
Democracy in Science
Thank you

Are you <40 years?

Cardiovascular Pharmacotherapists and Trialists of Tomorrow (CPTT)

A lot of benefits for you!!!