Lipidology Trials -
What’s New and What’s in the Pipeline?

Professor Basil S. Lewis, MD, FRCP, FACC, FESC

Past Chairman, WG on Cardiovascular Pharmacotherapy
European Society of Cardiology

SUPPORTED BY AN EDUCATIONAL GRANT FROM AMGEN and NOVARTIS
I have the following potential conflict(s) of interest to report

<table>
<thead>
<tr>
<th>Type of affiliation / financial interest</th>
<th>Name of commercial company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipt of grants/research support:</td>
<td>AstraZeneca, Bayer Healthcare, MSD, Resverlogix, KOWA, Pfizer</td>
</tr>
<tr>
<td>Receipt of honoraria or consultation fees:</td>
<td>Bayer Healthcare, MSD, Pfizer, Novo Nordisk</td>
</tr>
<tr>
<td>Participation in a company sponsored speaker’s bureau:</td>
<td>Pfizer, Novo Nordisk</td>
</tr>
</tbody>
</table>
Challenges in Lipidology Trials

- **What is the pathophysiology?**
 - What are the targets?
 - LDL? HDL? TG? LP(a)?
 - Relation between lipidology, atherosclerosis and CV events?
 - Time discrepancies?

- **What are the end-points?**
 - Can these guide in early/late phases of drug development?
 - Outcome events – This is what matters!

- **What is the comparator?**
 - Keeping pace with a rapidly evolving field
Targets

- **Targeting LDL**
 - PCSK9 Inhibitors (FOURIER, SPIRE, ODYSSEY)
 - RNA interference (RNAi) to reduce PCSK9 (ORION)
 - Decreasing LDL synthesis - Bempedoic acid

- **Targeting HDL**
 - CETP inhibitors
 - Epigenetics - BET on MACE program
 - Apo-A1 infusion – AEGIS program

- **Targeting triglycerides**
 - REDUCE-IT
 - PROMINENT

- **New - Targeting ANGPTL3 (inh of lipoprotein lipase)**
IMPROVE-IT - Proves again the LDL Hypothesis

CTT Collaboration.
Lancet 2005; 366:1267-78;
Effects of Evolocumab

- ↓ LDL-C by 59% to a median of 30 mg/dL
- ↓ CV outcomes in patients on statin
- Safe and well-tolerated

Figure:
- **LDL Cholesterol (mg/dl) vs. Weeks after randomization**
 - **Placebo:** No significant change in LDL-C levels.
 - **Evolocumab:** Median reduction of 59%, absolute decrease of 56 mg/dl.
 - **KM Rate (%) at 3 Years**
 - CVD, MI, stroke: HR 0.85 (0.79-0.92), P<0.0001
 - CVD, MI, stroke, UA, cor revasc: HR 0.80 (0.73-0.88), P<0.0001

Source: Sabatine MS et al. NEJM 2017;376:1713-22
Lower LDL-C Is Better

Patients divided by quartile of baseline LDL-C and by treatment arm

P<0.0001

Achieved LDL Cholesterol (mg/dl)

Cardiovascular Death, MI or Stroke

Q1 Q2 Q3 Q4

Placebo Evolocumab
From: Effect of the PCSK9 Inhibitor Evolocumab on Total Cardiovascular Events: A Prespecified Analysis From the FOURIER Trial
JAMA Cardiol. Published online May 22, 2019. doi:10.1001/jamacardio.2019.0886

First, Additional, and Total Primary End Point Events During Follow-up by Randomization Group

The first occurrence of the primary end point was significantly reduced in the evolocumab group compared with the placebo group (hazard ratio [HR], 0.85; 95% CI, 0.79-0.92; P < .001), as were additional events (incidence rate ratio [RR], 0.74; 95% CI, 0.65-0.85) and total events (RR, 0.82; 95% CI, 0.75-0.90; P < .001).

Figure Legend:

First, Additional, and Total Primary End Point Events During Follow-up by Randomization Group
Total Events During Follow-up by Randomization Group for Components of the Primary End Point

Total events were significantly reduced with evolocumab vs placebo for the component of myocardial infarction (incidence rate ratio [RR], 0.74; 95% CI, 0.65-0.84; P < .001) and stroke (RR, 0.77; 95% CI, 0.64-0.93; P = .007) and coronary revascularizations (RR, 0.78; 95% CI, 0.71-0.87; P < .001). There was no difference between treatment groups in total hospitalization for unstable angina events or in cardiovascular deaths.
VESALIUS: Effect of Evolocumab in Pts without Previous MI or Stroke

- Screening
- Randomization 1:1
- Evolocumab + optimized lipid-lowering therapy
 ≥ 6500 Subjects
- Placebo + optimized lipid-lowering therapy
 ≥ 6500 Subjects
- ≥ 4 years
- ≥ 13000 subjects
ORION-1

Inclisiran inhibits PCSK9 synthesis by RNA interference
Planned interim analysis of a multi-center randomized controlled dose-finding trial

Kausik K Ray, Ulf Landmesser, Lawrence A Leiter, David Kallend, Peter Wijngaard
Robert Dufour, Timothy Hall, Mahir Karakas, Traci Turner, Frank LJ Visseren,
R Scott Wright, and John JP Kastelein

On behalf of the ORION-1 investigators
Inclisiran inhibits PCSK9 synthesis by RNA interference.

Inclisiran harnesses a natural catalytic process:

- Synthetic double strand 21-23mer oligonucleotide
- 3x GalNAc at sense 3’ end enables hepatic-specific uptake via ASGP receptor
- Chemically modified to prevent RNAse degradation
- Dicer separates antisense strand – and incorporates it into RISC
- RISC degrades PCSK9 mRNA catalytically to halt PCSK9 protein synthesis in the liver

RISC - RNA induced silencing complex
One dose and two doses of inclisiran up to day 180
Efficacy of 300 mg versus placebo on LDL-C

Percentage change (±95% CI)

Days from first injection

Placebo (N=22) 300mg (N=21)

Placebo (N=23) 300mg (N=28)

Available data as of 25 Oct 2016
ORION-11: Efficacy of Inclisiran for Lowering LDL in pts with ASCVD/Risk

Percent change in LDL-C over time – observed values ITT patients

- Time-averaged Δ 50%
- Δ 54%

P-value for placebo – inclisiran comparison at each time point <0.00001

1. All 95% confidence intervals are less than ±2% and therefore are not visible outside data points

Ray, ESC, Paris, Aug 2019
Silencing Novel Target Genes: A New Strategy for Lipid Lowering

Advantages of siRNAs
- same molecule can destroy multiple copies of the RNA in a way that provides substantial longevity in terms of duration of effect
- can be targeted directly to the liver

New gene targets – proteins that inhibit the lipoprotein lipase pathway and triglyceride metabolism
- apolipoprotein C-III (APOC3)
- angiopoietin-like 3 (ANGPTL3)

The siRNA molecules targeting these genes are both in development by Arrowhead Pharmaceuticals. ARO-APOC3 is being developed as a potential treatment for patients with severe hypertriglyceridemia and familial chylomicronemia syndrome, and ARO-ANG3 is being developed for the treatment of dyslipidemias such as familial hypercholesterolemia and other metabolic diseases.
MAASTRICHT, The Netherlands — A novel antiprotein convertase subtilisin/kexin type 9 (PCSK9) recombinant fusion protein that offers a more convenient dosing regimen than anti-PCSK9 monoclonal antibodies substantially decreases low-density-lipoprotein (LDL)-cholesterol levels on patients already taking maximally tolerated statins, results of a phase 2 trial show.

LIB003 combines a PCSK9-binding domain with human serum albumin in a recombinant fusion therapeutic agent derived from a mammalian cell line. The binding domain blocks the interaction between PCSK9 and the LDL-cholesterol receptor, and the albumin linkage increases the half-life to 12 to 15 days, allowing low-volume injections to be given every 4 weeks.

Following on from promising phase 1 data, the team conducted a phase 2 study in which 81 patients were randomized to 150 mg, 300 mg, or 350 mg of LIB003 or placebo for 12 weeks.

Evan Stein, MD, founder, LIB Therapeutics, and Metabolic & Atherosclerosis Research Center, Cincinnati, presented the results here at the European Atherosclerosis Society 2019 Congress. LIB Therapeutics funded the study.
Targeting LDL: Novel Suppression of Cholesterol Synthesis - Bempedoic acid

- **Bempedoic acid** - directly inhibits ATP citrate lyase (ACL), a key enzyme that supplies substrate for cholesterol and fatty acid synthesis; upregulates LDL receptors

- **Esperion therapeutics** - 12,604 patients, 1000 sites, approximately 30 countries
Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study

Christie M. Ballantyne a, *, Maciej Banach b, G.B. John Mancini c, Norman E. Lepor d, e, Jeffrey C. Hanselman f, Xin Zhao f, Lawrence A. Leiter g
Targets

• **Targeting LDL**
 - Role of PCSK9 Inhibitors (FOURIER, SPIRE, ODYSSEY)
 - RNA interference (RNAi) to reduce PCSK9 (ORION)
 - Decreasing LDL synthesis - Bempedoic acid

• **Targeting HDL**
 - CETP inhibitors
 - Epigenetics - BET on MACE program
 - Apo-A1 infusion – AEGIS program

• **Targeting triglycerides**
 - REDUCE-IT
 - PROMINENT

• **Other - Targeting ANGPTL3 (inh of lipoprotein lipase)**
Cholesteryl Ester Transfer Protein (CETP) Inhibition

Cholesteryl ester transfer protein (CETP) is a plasma protein that catalyzes transfer of cholesteryl ester (CE) from HDL to apoB-containing lipoproteins (VLDL and LDL-C) in exchange for triglycerides.

Free Cholesterol (FC) in Extrahepatic tissues
LDL / VLDL

<table>
<thead>
<tr>
<th>Drug</th>
<th>HDL</th>
<th>LDL</th>
<th>Clinical Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torcetrapib (60 mg/d)</td>
<td>+61%</td>
<td>-24%</td>
<td>↑ Mortality</td>
</tr>
<tr>
<td>Dalcetrapib (600 mg/d)</td>
<td>+25%</td>
<td>-4%</td>
<td>Ø Benefit</td>
</tr>
<tr>
<td>Anacetrapib (100 mg/d)</td>
<td>+140%</td>
<td>~ -30%</td>
<td>REVEAL +</td>
</tr>
<tr>
<td>Evacetrapib (130 mg/d)</td>
<td>? +130%</td>
<td>? -30%</td>
<td>Abandoned</td>
</tr>
</tbody>
</table>

Adapted from Rosenson RS et al. Circulation 2012;125:1905
RVX-208 (Apabetalone) is a first-in-class, orally active, small-molecule stimulator of apolipoprotein (APO)A1 gene expression.

Bromodomain and Extra-Terminal (BET) Inhibitor

RVX-208 increases total HDL as well as the alpha- and pre-beta HDL fractions.
BET on MACE – Phase 3 Outcome Study

Primary Efficacy End Point: CV Death, Non-Fatal MI and Stroke (N=274)

Hazard ratio, 0.82 (95% CI, 0.65–1.04), P=0.11

Median follow-up 26 months

Primary Endpoint: Placebo 12.4% Apabetalone 10.3%

No. at Risk
Placebo 1206 1135 1102 937 641 383 108
Apabetalone 1212 1151 1114 950 672 397 107

Ray et al, AHA, Nov 2019
Single 80 mg/kg Infusion of Reconstituted ApoA-I Reduced Human Femoral Plaque Lipid & Macrophage Size > 50% in 5-7 Days

Gibson et al. AHA 2016
AEGIS-II: Study Design

A Phase 3, Multicenter, Double-blind, Randomized, Placebo-controlled, Parallel-group Study

- 17,400 AMI patients
- Stratification by:
 - STEMI/NSTEMI
 - PCI/medical mgt
 - Region

6 g CSL112 (n=8700)

Placebo (n=8700)

Dec 2019: >7000 pts enrolled

Visit: 1 2 3 4 5 6 7 8 9 10 11 12
Infusion: 1 2 3 4 D 180 D 365

Interim analysis for efficacy at 70% of targeted MACE
Interim analyses for futility will be conducted at 30 & 50% of targeted MACE

- Enriched Study Population: Multi-vessel disease and one of the following: ≥65 years of age, previous MI, peripheral artery disease, or diabetes mellitus
- Primary endpoint: Time-to-first occurrence of CVD, MI or stroke through day 90
- Follow up: All subjects followed for at least 365 days
 Targets

• **Targeting LDL**
 - PCSK9 Inhibitors (FOURIER, SPIRE, ODYSSEY)
 - RNA interference (RNAi) to reduce PCSK9 (ORION)
 - Decreasing LDL synthesis - Bempedoic acid

• **Targeting HDL**
 - CETP inhibitors
 - Epigenetics - BET on MACE program
 - Apo-A1 infusion – AEGIS program

• **Targeting triglycerides**
 - REDUCE-IT
 - STRENGTH
 - PROMINENT

• **Other - Targeting ANGPTL3 (inh of lipoprotein lipase)**
Increased residual CV risk in patients with Diabetes and High (200-499mg%) vs Normal (<150mg%) TG despite statin-controlled LDL cholesterol

Gregory Nichols et al, Diabetes Obes Metab. 2018;1–6
REDUCE IT: CV Risk Reduction with Icosapent Ethyl (Vascepa) For Hypertriglyceridemia (N=8179)

- **Targeted pts with high TG** (mean 216; range 150-499mg%)
- **High dose (2G bid) purified** product
- 71% sec prevention, 40% DM, Baseline LDL-C 75 mg%
REDUCE-IT

Total (First and Subsequent) Events
Key Secondary: CV Death, MI, Stroke

Key Secondary Composite Endpoint

RR, 0.72
(95% CI, 0.63–0.82)
P=0.00000071

HR, 0.74
(95% CI, 0.65–0.83)
P=0.0000006

ACC 2019
STRENGTH (Statin Residual Risk Reduction With Epanova in High CV Risk Patients with Hypertriglyceridemia)

- Double-blind, placebo-controlled (corn oil), parallel group design using Epanova (AZ; n-3 fatty acid)
- 13,000 patients with hypertriglyceridemia, low HDL and high risk for CVD
- Randomized 1:1 to corn oil + statin or Epanova + statin, once daily
- Approximately 3-5 years follow up - MACE outcomes driven trial

Results expected – 2020
PROMINENT

- Test Product: K-877 (pemafibrate) 0.2 mg
- Dose: One tablet twice daily
- Mode of Administration: Oral
- Mechanism of action: new generation selective PPAR-α modulator (SPPARM-α)
- Storage: Room temperature

Benefit-Risk Profile

<table>
<thead>
<tr>
<th>Benefit-Risk Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>greater potency and PPAR-α selectivity than fenofibrate</td>
</tr>
<tr>
<td>greater TG-lowering efficacy</td>
</tr>
<tr>
<td>improved safety and tolerability</td>
</tr>
<tr>
<td>minimal inhibitory effects on major drug-metabolizing enzymes and transporters</td>
</tr>
<tr>
<td>no impact of renal function on maximum total exposure</td>
</tr>
<tr>
<td>no evidence of QTc prolongation</td>
</tr>
<tr>
<td>less frequent elevation of liver enzymes than fenofibrate</td>
</tr>
</tbody>
</table>
Triglycerides: PROMINENT Study (N=10,000)

Patient population
- Adults with T2D with moderate hypertriglyceridemia and low HDL
- Stable background therapy with statins (or statin intolerant within LDL targets)
 2/3 subjects: with documented CVD
 1/3 subjects: primary prevention (M≥50y or F≥55y)

Pre-Screening Based on medical records

Screening procedures

Randomization
1:1 Ratio

Visit 0 1 1.1 2 3 4 5 6 7 8 9
Week/Month -6W -3W 0 1W M2 M4 M6 M8 M10 M12 CSED FU

Arm 1: Pemafibrate 0.2 mg BID

Arm 2: Placebo BID

Alternate bi-monthly calls and in person visits

Key randomization criteria
- A1c ≤9.5%
- Fasting TG >200<500 mg/dL
- HDL<40 mg/dL

Primary endpoint: MACE+
- MI
- Ischemic Stroke
- CVD death
- Unstable angina requiring unplanned revascularization

Nov 2019 – 8455 recruited
Targets

- **Targeting LDL**
 - PCSK9 Inhibitors (FOURIER, SPIRE, ODYSSEY)
 - RNA interference (RNAi) to reduce PCSK9 (ORION)
 - Decreasing LDL synthesis - Bempedoic acid

- **Targeting HDL**
 - CETP inhibitors
 - Epigenetics - BET on MACE program
 - Apo-A1 infusion – AEGIS program

- **Targeting triglycerides**
 - REDUCE-IT
 - PROMINENT

- **New - Targeting ANGPTL3 (inh of lipoprotein lipase)**
Association of Genetically Enhanced Lipoprotein Lipase–Mediated Lipolysis and LDL Cholesterol–Lowering Alleles With Risk of CAD and Type 2 Diabetes

Lotta et al, JAMA Cardiology 2018;3(10):957-966
ANGPTL3 and Protection from CAD

CENTRAL ILLUSTRATION: ANGPTL3 Deficiency and Protection From Coronary Artery Disease

A
Deep Phenotyping in a Mendelian Family with Complete ANGPTL3 Deficiency
Complete ANGPTL3 Deficiency
First-degree Related Controls
No Coronary Atherosclerosis Detected in Complete ANGPTL3 Deficiency

Quantify Atherosclerotic Plaque

B
Large-scale Association of Heterozygous ANGPTL3 Deficiency
Loss of Function Mutations
Test for Association with CAD
Functional Analysis of Missense Mutations in Mouse Models

C
Circulating ANGPTL3 Levels and Risk of MI
Cases with MI
Control
Measure Plasma ANGPTL3 Protein Concentration

35% Decreased Risk of Myocardial Infarction in Lowest Tertile of ANGPTL3 Concentration

Evinacumab – “FDA Grants Breakthrough Designation”

- Evinacumab is a **monoclonal antibody to angiopoietin-like protein 3 (ANGPTL3)** - an **inhibitor of lipoprotein lipase (LPL)** (which is responsible for breakdown of triglycerides and other lipids)

- In Phase I, **evinacumab reduced TG levels by 64-73%**, far outperforming current treatments such as fish oils or fibrates which typically reduce TG by 20% to 50%

- In **Homozygous familial hypercholesterolemia (HoFH)** -
 - adding the drug to standard cholesterol treatment such as statins improved LDL-cholesterol reduction
Evinacumab – ELIPSE HoFH Trial

ANGPTL3 antibody halves LDL-c levels in HoFH patients in phase 3 trial

NEWS - AUG. 15, 2019

Positive phase 3 results of the ELIPSE HoFH trial have been announced for evinacumab, an investigational angiopoietin-like 3 (ANGPTL3) antibody, in patients with homozygous familial hypercholesterolemia (HoFH). ANGPTL3 acts as an inhibitor of lipoprotein lipase (LPL) and endothelial lipase, and appears to play a central role in lipoprotein metabolism.

On average, patients entered the trial with LDL-c levels of 255 mg/dL, despite treatment with other lipid-lowering therapies, including maximally-tolerated statins, PCSK9 inhibitors, ezetimibe, LDL apheresis and lomitapide. The trial met its primary endpoint, showing that adding evinacumab to other lipid-lowering therapies decreased LDL-c by 49% on average, compared to lipid-lowering therapies alone.

ELIPSE HoFH is an ongoing phase 3 randomized, double-blind, placebo-controlled, parallel-group trial evaluating the efficacy and safety of evinacumab 15 mg/kg administered intravenously every four weeks in 65 patients aged 12 years or older with HoFH (43 evinacumab, 22 placebo). In the evinacumab treatment group, 98% of patients were on statins, 81% were on PCSK9 inhibitors, 75% were on ezetimibe, 33% were on LDL apheresis and 26% were on lomitapide. In addition, 35% of evinacumab patients had the most severe, "null/null" form of HoFH.

The phase 3 trial was designed to assess the effect of evinacumab on LDL-c and other lipid-related endpoints. Results from the evinacumab group at week 24 included:

- 49% reduction in LDL-c from baseline, compared to placebo (47% reduction for evinacumab vs. 2% increase for placebo, P<0.0001), the primary endpoint. LDL-c reductions were observed from the first assessment at week 2, and were maintained throughout the 24-week double-blind treatment period.

- 132 mg/dL absolute change in LDL-c from baseline, compared to placebo (135 mg/dL reduction...