Stroke prevention:
Patent foramen ovale closure

Prof. Markus Schwerzmann, University Hospital Inselspital, Bern, CH

Supported by Bayer, Bristol-Myers Squibb and Pfizer Alliance, Boehringer Ingelheim, Daiichi Sankyo Europe GmbH and Medtronic in the form of educational grants. The scientific programme has not been influenced in any way by its sponsors.
Declaration of Interest

Nothing to disclose
Cryptogenic stroke

- Ca. 25% (10-40%) of patients with ischemic stroke have no probable cause found after standard workup (TTE, 24-hour Holter monitoring, MRI or CT of of the infarct in the brain / neck and brain arteries, blood work).
- Embolic strokes of undetermined source (nonlacunar brain infarcts without substantial proximal arterial stenosis or major cardioembolic sources) represent 80 to 90% of all cryptogenic ischemic strokes.
- Occult, low-burden, paroxysmal atrial fibrillation is increasingly recognized as a source of cryptogenic stroke, especially in older patients (>60 y. of age).
- Low risk of recurrence with aspirine: 1-2% per year.

Cryptogenic stroke (CS) is a diagnosis of exclusion

Conventional classification:

- Atherosclerotic
- Small arterial occlusion
- Cardioembolic
- Other causes
- Cryptogenic

Potential etiologies of CS:

- Paroxysmal atrial fibrillation
- Aortic arch atheromas
- Inherited thrombophilias
- Patent foramen ovale

Patent foramen ovale (PFO)

- Persistent opening between the atrial septum primum and secundum at the level of the fossa ovalis
- Prevalence: 27.3%\(^1\)
- Mean size ca. 5 mm
- Larger shunt size:
 - atrial septal aneurym
 - prominent valvula Eustachii

PFO and stroke

NEJM 1988¹

- 60 adults < 55 years with ischemic stroke and normal cardiac exam
- PFO prevalence
 - controls: 10%
 - stroke with identif. cause: 21%
 - stroke with risk factor: 40%
 - stroke without identif. cause: 54%

PFO closure and stroke: 1992-2016

Circulation 1992¹

- Case series of 36 patients with presumed paradoxical embolism (strokes, TIAs, systemic arterial emboli, brain abscesses)
- Transcatheter closure can be accomplished with little morbidity

Clinical trials

None of the trials showed superiority of PFO closure vs. medical therapy in the prevention of recurrent vascular events.

PFO and stroke

RoPE score 2013¹

- Age, cortical infarct, nonsmoker, first event, no diabetes nor hypertension

- Score 10: 29 y. old with cortical infarction and no CV risk factor

- Score 0: 70 y. old smoker with hypertension, diabetes, prior stroke and no cortical infraction

<table>
<thead>
<tr>
<th>ROPE Score</th>
<th>PFO %</th>
<th>Attrib. Risk</th>
<th>Recurr. Rate @2y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>23</td>
<td>0</td>
<td>20 (12-28)</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>38</td>
<td>12 (6-18)</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>62</td>
<td>8 (4-12)</td>
</tr>
<tr>
<td>8</td>
<td>67</td>
<td>84</td>
<td>6 (2-10)</td>
</tr>
<tr>
<td>9-10</td>
<td>73</td>
<td>88</td>
<td>2 (0-4)</td>
</tr>
</tbody>
</table>

PFO and stroke – what have learned so far

• Paradoxical embolism can lead to stroke but is usually a diagnosis of presumption
• There are „incidental“ PFOs and there are „dangerous“ PFOs

• 2014 AHA stroke prevention guidelines: For patients with a cryptogenic ischemic stroke or TIA and a PFO without evidence for DVT, available data do not support a benefit for PFO closure (Class III; Level of Evidence A).

• Study design matters: identification of „dangerous“ PFOs, length of f/u, not all devices are performing equally well

PFO closure and stroke – a new era begins (2017)

PFO closure

yes

no
<table>
<thead>
<tr>
<th></th>
<th>RESPECT ext. f/u (n=980; 46 y.)</th>
<th>CLOSE (n=664; 43y.)</th>
<th>REDUCE (n=664; 45 y.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Event driven</td>
<td>900 pts.</td>
<td>N=664</td>
</tr>
<tr>
<td></td>
<td>1:1 rand.</td>
<td>1:1:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Device vs. medical therapy</td>
<td>Antiplatelet vs. OAC vs. device</td>
<td>Device + ASA vs. antiplatelet</td>
</tr>
<tr>
<td>Follow-up</td>
<td>5.9 y (IQR 4.2-8y)</td>
<td>5 +/- 2 y.</td>
<td>3.2 y (IQR 2.2-4.8)</td>
</tr>
<tr>
<td>Primary endpoint</td>
<td>Stroke</td>
<td>Stroke</td>
<td>Stroke</td>
</tr>
<tr>
<td></td>
<td>All-cause mortality</td>
<td></td>
<td>Brain infraction</td>
</tr>
<tr>
<td>Device</td>
<td>Amplatzer</td>
<td>11 diff. devices</td>
<td>HELEX or GSO</td>
</tr>
<tr>
<td></td>
<td>ASA for 6 mo.</td>
<td></td>
<td>Plus antiplat. tx.</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>18-60 y. of age</td>
<td>16-60 y. of age</td>
<td>18-59</td>
</tr>
<tr>
<td></td>
<td>CS* (270 days prior)</td>
<td>CS* (6 months prior)</td>
<td>CS* (180 days prior)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Closure superior</td>
<td>Closure superior to antiplatelet</td>
<td>Closure superior (stroke prevention)</td>
</tr>
<tr>
<td></td>
<td>HR 0.55 (0.31-0.999)</td>
<td>HR 0.04 (0-0.27)</td>
<td>HR 0.23 (0.09-0.62)</td>
</tr>
</tbody>
</table>

CS* cryptogenic stroke
PFO and stroke – Assessing the evidence for closure

• „A PFO and a sizable interatrial shunt should no longer result in the categorization of a stroke as cryptogenic.”\(^1\)

• PFO closure patients < 60 y. of age and “cryptogenic stroke“ are 30-50% less likely to have a stroke recurrence than patients with antiplatelet therapies (NNT ca. 20-40 for 1 stroke over 5 years).\(^2\)

• Device-related complications: 2-3%;
 Atrial fibrillation after device implantation: 6%

Cryptogenic stroke
PFO present

- Age < 60 y.
 - Large shunt or with atrial septal aneurysm
 - PFO closure
- Age < 60 y.
 - Small-moderate shunt
 - RoPE Score > 5
 - PFO closure
- Age < 60 y.
 - Small-moderate shunt
 - RoPE Score ≤ 5
 - Consider PFO closure vs. medical therapy
- Age ≥ 60 y.
 - Medical therapy