Secondary prevention after ESUS

Marta Rubiera, MD PhD
Stroke Neurologist
Hospital Vall d’Hebron

Supported by Bayer, Bristol-Myers Squibb and Pfizer Alliance, Boehringer Ingelheim, Daiichi Sankyo Europe GmbH and Medtronic in the form of educational grants. The scientific programme has not been influenced in any way by its sponsors.
Declaration of Interest

Nothing to declare
What is ESUS?

~85% of all strokes are ischaemic\(^1\)

~25% of these have no known cause\(^2\)

Previously termed ‘cryptogenic’:
~300,000 incident cases/year in North America and Europe

A subgroup of these are due to thromboembolism

New category proposed:

‘Embolic stroke of undetermined source’ (ESUS)\(^2\)

1. Andersen K et al. Stroke 2009;40:2068–72
Advances in imaging and improved understanding of stroke pathophysiology

Reassessment of ‘cryptogenic’ stroke

Non-lacunar brain infarct without large artery stenosis or cardioembolic sources

International Working Group of experts proposes new definition

More clinically useful, positively defined entity than cryptogenic stroke

Step-wise approach to diagnosis
76 years-old male, with vascular risk factors, who presents with fluctuating right-hand paresia and mild aphasia...

Embolic? YES Cryptogenic? YES ESUS? NO
Definitions of cryptogenic stroke vs ESUS

Cryptogenic stroke
- Diagnostic assessment incomplete
- Cause cannot be established due to ≥1 possible cause
- No cause found from assessment

ESUS if proven to be:
- NOT lacunar
 - NOT occlusive large atherosclerosis
 - NOT major cardioembolic source
NOT lacunar*

* Subcortical infarct <1.5mm on CT or <2mm on MRI
Definitions of cryptogenic stroke vs ESUS

Cryptogenic stroke
• Diagnostic assessment incomplete
• Cause cannot be established due to ≥1 possible cause
• No cause found from assessment

ESUS if proven to be:
• NOT lacunar

NOT occlusive large atherosclerosis
• NOT major cardioembolic source
NOT occlusive large atherosclerosis
Definitions of cryptogenic stroke vs ESUS

Cryptogenic stroke
- Diagnostic assessment incomplete
- Cause cannot be established due to ≥1 possible cause
- No cause found from assessment

ESUS if proven to be:
- NOT lacunar
- NOT occlusive large atherosclerosis

NOT major cardioembolic source
NOT major cardioembolic source
Infrequent stroke etiologies
Brain CT/MRI showing only embolic infarct (more than 1.5 cm)
MRA/ CTA of extra and intracranial vessels supplying the area of infarct with less than 50% atherosclerosis
Negative Trans Thoracic Echocardiography (No intracardiac thrombus, prosthetic valve, , mitral stenosis, atrial myxoma or other cardiac tumors, recent (<4 weeks) myocardial infarction, LVEF < 30%, no valvular vegetations, no infective Endocarditis)
No other specific cause of stroke like arteritis, dissection, migraine/vasospasm, drug abuse identified
Cardiac monitoring for ≥24 h with automated rhythm detection and no history of Permanent or paroxysmal atrial fibrillation,

- Consider Trans esophageal echocardiography
- Consider coagulopathy work-up
- Consider Metabolic or Genetic testing
- Consider Spinal Tap e.g. infection, vasculitis
- Consider further Imaging

- Long term Cardiac monitoring (minimum 30 days)
- D-Dimer, DVT screen, MRV of pelvic veins
- Lab Evaluation of hypercoagulable states (younger patients)
- Consideration of malignancy (older patients)

- Goal: Aortic arch atheroma, atrial valvulopathy, aortic valvulopathy, atrial/ventricular septal pathology
- Goal: Underlying surveillance of arrhythmias, in particular atrial fibrillation

- e.g. Fabry disease, Mitochondrial disease work-up, CADASIL, CARASIL, HERSN, Migrainous infarction, etc.
Covert AF
Non-AF auricular arrhythmias
Auricular dysfunction

Ventricular dysfunction
CHF

Paradoxal embolism

Non-stenosant atherosclerosis
Vascular death, non-fatal stroke, non-fatal myocardial infarction or major bleeding complication

Recurrent ischemic stroke

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Anticoagulation</th>
<th>Antiplatelet</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INR 2.0 - 3.6</td>
<td>99/536</td>
<td>98/532</td>
<td>100.0 %</td>
<td>1000 %</td>
<td>1.00 [0.78, 1.29]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>536</td>
<td>532</td>
<td>100.0 %</td>
<td>1000 %</td>
<td>2.30 [1.58, 3.35]</td>
</tr>
<tr>
<td>Total events</td>
<td>99 (Anticoagulation), 98 (Antiplatelet)</td>
<td>100.0 %</td>
<td>1.00 [0.78, 1.29]</td>
<td>2.30 [1.58, 3.35]</td>
<td></td>
</tr>
</tbody>
</table>

8 trials

De Schryver ELM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ
Major bleeding complication

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Anticoagulation</th>
<th>Antiplatelet</th>
<th>Risk Ratio M.H.Fixed (95% CI)</th>
<th>Weight</th>
<th>Risk Ratio M.H.Fixed (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INR 1.4 - 2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARSS 2001</td>
<td>38/1103</td>
<td>30/1103</td>
<td>1.27 [0.79, 2.03]</td>
<td>100.0 %</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1103</td>
<td>1103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 INR 2.0 - 3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESPRIT 2007</td>
<td>45/536</td>
<td>18/532</td>
<td>2.48 [1.46, 4.23]</td>
<td>57.5 %</td>
<td></td>
</tr>
<tr>
<td>Garde 1983</td>
<td>8/114</td>
<td>4/127</td>
<td>2.23 [0.69, 7.20]</td>
<td>12.0 %</td>
<td></td>
</tr>
<tr>
<td>Olsson 1980</td>
<td>7/68</td>
<td>3/67</td>
<td>2.30 [0.62, 8.52]</td>
<td>9.6 %</td>
<td></td>
</tr>
<tr>
<td>SWAT 1998</td>
<td>0/59</td>
<td>6/58</td>
<td>0.08 [0.00, 1.31]</td>
<td>20.9 %</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>777</td>
<td>784</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 INR 3.0 - 4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIRIT 1997</td>
<td>53/651</td>
<td>6/665</td>
<td>9.02 [3.91, 20.84]</td>
<td>100.0 %</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>651</td>
<td>665</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 38 (Anticoagulation), 30 (Antiplatelet)

Heterogeneity: not applicable

Test for overall effect: Z = 0.98 (P = 0.33)

Total events: 60 (Anticoagulation), 31 (Antiplatelet)

Heterogeneity: Chi² = 5.92, df = 3 (P = 0.12), I² = 49%

Test for overall effect: Z = 3.07 (P = 0.0021)

Total events: 53 (Anticoagulation), 6 (Antiplatelet)

Heterogeneity: not applicable

Test for overall effect: Z = 5.15 (P = 0.00001)
Risk Stratification for Recurrence and Mortality in Embolic Stroke of Undetermined Source

Results—One hundred fifty-nine (5.6%) ischemic stroke/TIA recurrences and 148 (5.2%) deaths occurred in 1095 patients (median age, 68 years) followed-up for a median of 31 months. Compared with CHADS, score 0, CHA₂DS₂-VASc scores were higher for each risk factor.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>CHADS₂ (Maximum score, 6)</th>
<th>CHA₂DS₂-VASc (Maximum score, 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Age 65-74</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥75</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Female sex</td>
<td>N/A</td>
<td>1</td>
</tr>
<tr>
<td>Previous stroke/TIA</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Covert AF and stroke risk

- **24h**: 3.8%
- **48%**: 6.4%
- **7 days**: 9%
- **3 w- 6 mo**: 15%
• High clinical suspicion of cardioembolism
• Low risk of bleeding
• High recurrent risk (CHADS-VASC)
• High probability of AF:
 • Dilated atrium,
 • chicken wing appendage
 • BNP, troponin
 • Frequent extrasist
For how long?

• Depends on availability and type of long-term ECG monitoring

• 3 weeks to 3 months... to ≥ 1 year...

• If no AF detected.....switch to antiplatelet?
ESUS-RCT

• NAVIGATE ESUS
 • Rivaroxaban vs AAS

• RE-SPECT ESUS
 • Dabigatran vs AAS

• ITTACUS
 • Apixaban vs AAS
NAVIGATE-ESUS: SECONDARY PREVENTION OF STROKE IN PATIENTS WITH A RECENT ESUS

Supported by BAYER

Principal Investigator at BMC: Viken Babikian, MD

Study duration: 18+ months

Study drugs: Rivaroxaban 15mg vs aspirin 100mg QD

ClinicalTrials.gov Identifier: NCT02313909

Recruitment Status: Terminated (Study halted early due to no efficacy improvement over aspirin at an interim analysis and very little chance of showing overall benefit if study were completed)

First Posted: December 10, 2014

Last Update Posted: October 23, 2017
Thanks for your attention...