Clinical case: My patient with chest pain stays in a Chest Pain Unit!

ACCA Masterclass 2017

Frank Breuckmann
Disclosures

- Nothing to disclose
Structure - overview

• **1st part**

 • Clinical scenario of a patient with chest pain admitted to our emergency department before introducing chest pain unit pathways

• **2nd part**

 • Current developments of chest pain unit certification in Germany and benchmarks from the German chest pain unit registry
Clinical case
Anamnesis and body check

• Age: 53 years
• Gender: male
• Actual complaints: sudden onset of atypical chest pain (retrosternal discomfort) 2 hours before admission
• Risk factors: arterial hypertension
• Medication: diuretics
• Pre-existing diseases: long-lasting infection of the upper respiratory tract 2 months before
• Vital signs: blood pressure 135-80mmHg, heart rate 95bpm, oxygen saturation 98%
Clinical case
Initial work-up

- ECG at admission
 - Signs of left ventricular hypertrophy
 - Non-significant ST-elevation in the anterior leads
Clinical case
Initial work-up

• ECG at admission

• TTE at admission
 • Left ventricular hypertrophy
 • Normal ejection fraction without any wall motion abnormalities
 • Mild insufficiency of the aortic valve
 • Aneurysm of the ascending aorta of 5.2cm in diameter
Clinical case
Initial work-up

• ECG at admission

• TTE at admission

• Laboratory tests
 • High-sensitive troponin T: 0.035ng/ml
 • D-dimers: 0.7mg/ml
Clinical case
Differential diagnoses

- **Acute aortic syndrome**
 - Pro: aneurysm of the ascending aorta, non-ischemic pain, positive D-dimers
 - Contra: no severe pain, no neurological signs, no malperfusion

- **Acute coronary syndrome**
 - Pro: therapy resistant chest pain, high-sensitive troponin T within the observation zone
 - Contra: atypical discomfort, no specific ischemic signs on ECG, normal EF, no regional wall motion abnormalities
Clinical case:
1. assumption: acute coronary syndrome

- Coronary angiography
Clinical case:
1. assumption: acute coronary syndrome

- Normal coronary tree
 - No stenosis, no obstruction, no culprit lesion
Clinical case
2. assumption: acute aortic syndrome

• Computed tomography of the aorta
Clinical case
2. assumption: acute aortic syndrome

- Insufficient image quality due to repeated premature ventricular contractions at the time of image acquisition
- Prolonged infection of the respiratory tract
- Small contrast signal in the left anterior quadrant of the ascending aorta diagnosed as motion artifact
Clinical case:
3. assumption: myocarditis

- Cardiac magnetic resonance imaging
Clinical case:
3. assumption: myocarditis

- Double-oblique view of the cine-CMR
 - Ulcer-like lesion superior to the aortic root (left anterior aortic quadrant)
 - Same location as within the initial suspicious CT

- Confirmed by a repeated CT angiography of the complete aorta before surgery
Clinical case
Final diagnosis: penetrating aortic ulcer

- Only a few minutes following the second CT the patient suffered hemodynamic instability needing cardiopulmonary resuscitation
- Surgical site: progression to type A aortic dissection with inversion of the intima flap resulting in an occlusion of the supra-aortic limbs
Clinical case
Critical review

• Critics
 • Wrong initial triage with a life-threatening delay of therapy
 • No risk scoring for acute aortic syndromes used, no further clinical evaluation (e.g. differences in blood pressure)
 • A localized dissection membrane or ulcer-like lesion should have been assumed, but diagnosis failed by insufficient interpretation
 • Second imaging study should have been performed at the time the first imaging was non-diagnostic (or alternative diagnostic measures) if the clinical suspicion remains high

• Main problem
 • No dedicated pathway on AAS in place at this time teaching the aforementioned points
Process improvement Effects in chest pain patients

![Bar chart and survival curve showing effects of hospital composite guideline adherence on in-hospital mortality and cardiac events.](chart)

ACS-Patienten sollten bevorzugt in ausgewiesenen „Chest Pain Units“ oder spezialisierten Intensiveinheiten aufgenommen werden.

ACS patients should be preferentially admitted to designated "Chest Pain Units" or specialized intensive care units.

www.escardio.org/ACCA ACCA Masterclass 2017
CPU pathways
Now we are better...
CPU movement in Germany
Principles and timeline

- **Main target:**
 - To ensure a systematic protocol-driven uniform standard-of-care

- **Start:**
 - Dedicated certification criteria were worked out by the German Cardiac Society (GCS) in 2008
 - Key elements of certification include characteristic locations, equipment, diagnostic and therapeutic strategies, cooperations, staff education, organization
 - First update 2015
CPU certification

Elements of accreditation

<table>
<thead>
<tr>
<th>Table 1: Spatial requirements for the establishment of a CPU</th>
<th>Table 6: Education and training of the CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterium</td>
<td>Minimum requirement</td>
</tr>
<tr>
<td>Rooms/n</td>
<td>Table 2: Technical requu</td>
</tr>
<tr>
<td>Bed capacity</td>
<td>12-lead ECG</td>
</tr>
<tr>
<td>Access</td>
<td>Blood pressure measurement</td>
</tr>
<tr>
<td>Catheterization laboratory</td>
<td>TTE</td>
</tr>
<tr>
<td>Resuscitation/ emergency concept</td>
<td>Rhythm monitoring</td>
</tr>
<tr>
<td></td>
<td>Resuscitation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: Cooperations and partners of a CPU</th>
<th>Table 7: Organization of a CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterium</td>
<td>Minimum requirement</td>
</tr>
<tr>
<td>General emergency room</td>
<td>Available 24/7</td>
</tr>
<tr>
<td>Emergency outpatient clinic</td>
<td>Integration of the CPU in the existing emergency structures</td>
</tr>
<tr>
<td>Emergency physician</td>
<td>Preclinical STEMI program with direct of the patient to the catheterization lab</td>
</tr>
<tr>
<td>Intensive care unit</td>
<td>Available 24/7; transfer time <15 min</td>
</tr>
<tr>
<td>Catheterization laboratory</td>
<td>Available 24/7, transfer <15 min</td>
</tr>
<tr>
<td>Radiology</td>
<td>Chest X-ray (available 24/7)</td>
</tr>
<tr>
<td></td>
<td>CT (available 24/7)</td>
</tr>
<tr>
<td>Additional cooperations</td>
<td>Cardiovascular and thoracic surgery</td>
</tr>
<tr>
<td></td>
<td>Other medical specialties</td>
</tr>
</tbody>
</table>

MRI: magnetic resonance imaging

ACCA Masterclass 2017

ACCA Masterclass 2017

www.escardio.org/ACCA
CPU certification
Process of accreditation

• **Formal steps**
 • Application by the institution
 • Formal checkup of the pre-submitted documentation
 • Assessment of minimum requirements by an expert committee of the GCS
 • Review of the facility’s application, infrastructure, patient care, and each of the requirements according to the consensus document by an audit team on site

• **Certification**
 • An expert committee of the GCS finally awards certification with or without further conditions
CPUs in Germany
Development since 2008

• Goal:
 • to implement a broad network in a minimum of time

• Estimations of sites needed:
 • initial: 300-400 sites
 • adapted: 250 sites
 • latest: 300 sites
CPUs in Germany
Certified sites and total cath lab locations

- Current status end of 2016:
 - 250 certified CPUs across Germany
 - first certified CPUs outside Germany (Switzerland, Austria)
CPUs in Germany
Local distribution and gap analysis

- Absolute number less decisive than the identification of critical gaps and support of mostly nonacademic interventional hospitals
- High number of CPUs and CPU bed capacities within the big cities and academic hospitals
- Certain undersupply in rural areas and some of the former eastern federal states

CPU bed per state inhabitants

<table>
<thead>
<tr>
<th>State</th>
<th>CPU bed per state inhabitants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thuringia</td>
<td>134,797</td>
</tr>
<tr>
<td>Saxony</td>
<td>84,485</td>
</tr>
<tr>
<td>Saarland</td>
<td>82,420</td>
</tr>
<tr>
<td>Mecklenburg-West Pomerania</td>
<td>79,957</td>
</tr>
<tr>
<td>Saxony-Anhalt</td>
<td>74,518</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>74,481</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>72,902</td>
</tr>
<tr>
<td>North Rhine-Westphalia</td>
<td>61,243</td>
</tr>
<tr>
<td>Lower Saxony</td>
<td>60,206</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>54,440</td>
</tr>
<tr>
<td>Berlin</td>
<td>54,216</td>
</tr>
<tr>
<td>Bavaria</td>
<td>52,662</td>
</tr>
<tr>
<td>Rhineland-Palatinate</td>
<td>48,922</td>
</tr>
<tr>
<td>Hesse</td>
<td>42,319</td>
</tr>
<tr>
<td>Hamburg</td>
<td>34,565</td>
</tr>
<tr>
<td>Bremen</td>
<td>19,467</td>
</tr>
</tbody>
</table>
German CPU-Registry
A unique benchmarking tool

- Established in December 2008
 - Non-obligatory
 - Central data collection by the Institute for Myocardial Infarction Research Foundation Ludwigshafen (IHF), Germany

- Data collection on
 - Demographics, clinical presentation, laboratory and diagnostic testings, diagnoses, time frames and a 3-months follow-up interview

- Data from 40 centers from 32 cities
 - Real-world database on the diagnosis and therapy of ACS in Germany
 - Selection bias, only about 20% of the certified centers

- To present, approximately 35,000 patients included
CPU registry
Preclinical data

- **Time intervals in STEMI patients:**
 - Symptom onset to admission: 128min (48-720min)
 - First medical contact to admission: 58min (35-118min)
 - High preclinical delay, low admission rate by EMS

- **Better data for off-hours**
 - Symptom onset to admission significantly shorter during off-hours, fewer patients waited longer than 4 hours (33.0% vs. 43.1%)
 - Low proportion of self-referrals (15%), first medical contact to admission below 45min
CPU registry
STEMI and troponin-positive NSTE-ACS

- **STEMI - critical time intervals**
 - First medical contact to balloon time: 86min on-hours vs. 90min off-hours
 - Door to puncture time: 31min (11-75min)
 - Door to balloon time daytime: 32min (18-66min)
 - Door to balloon time off-hours: 44min (23-80min)

- **Troponin-positive NSTE-ACS**
 - Hospital admittance to intervention: 5h
 - Guideline-adherent timing of coronary angiography: 88% (especially in patients at very high risk)
CPU registry
Troponin-negative NSTE-ACS

• **Time intervals**
 - hospital admittance to intervention: 22h
 - Urgent and early invasive strategy: 4:10h (7.7%)
 - Early elective invasive strategy: 22:34h (16.9%)
 - Late elective invasive strategy: 49:30h (12.4%)

• **Guideline-adherence**
 - Overall guideline-conforming timing of invasive diagnostics: 38.2%
CPU registry

Troponin-negative NSTE-ACS

<table>
<thead>
<tr>
<th>Outcome</th>
<th>High risk * (n=792)</th>
<th>Low risk * (n=366)</th>
<th>Overall guideline adherence (n=1158)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>guideline-conform (PCI)</td>
<td>undetreatment (conservative)</td>
<td>p-value</td>
</tr>
<tr>
<td>Death</td>
<td>15.2%</td>
<td>53.2%</td>
<td>0.47</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.1%</td>
<td>1.9%</td>
<td>0.23</td>
</tr>
<tr>
<td>MI</td>
<td>0.7%</td>
<td>1.0%</td>
<td>0.74</td>
</tr>
<tr>
<td>MACCE</td>
<td>2.0%</td>
<td>4.1%</td>
<td>0.21</td>
</tr>
<tr>
<td>PCI</td>
<td>19.9%</td>
<td>6.9%</td>
<td><0.0001*</td>
</tr>
<tr>
<td>CABG</td>
<td>0.7%</td>
<td>4.6%</td>
<td><0.05*</td>
</tr>
<tr>
<td>Revascularisation</td>
<td>20.5%</td>
<td>11.0%</td>
<td><0.01*</td>
</tr>
<tr>
<td>CV rehosp</td>
<td>29.1%</td>
<td>24.5%</td>
<td>0.25</td>
</tr>
<tr>
<td>Total rehosp</td>
<td>35.8%</td>
<td>35.8%</td>
<td>1.00</td>
</tr>
</tbody>
</table>

ACCA Masterclass 2017
CPU registry
Community outreach and awareness

- **Problem**
 - Still many patients misinterpret symptoms of ACS
 - Proportion of self-referral of up to one third
 - Self-referrals have a patient-related additional delay of 4h (even though 13% STEMI or NSTEMI patients)
 - Time interval between symptom onset and hospital admission: 4h

 ➢ Strengthening community outreach will remain a major emphasis within the CPU certification effort
CPU experience in Germany

Summary

- Very fast implementation of a nationwide CPU-network in Germany by the use of a uniform certification process
 - >250 CPUs in less than a decade
 - Still need for a more balanced distribution across the country
- Networking as a key step in the management acute chest pain
 - Outpatient care, GPs, EMS, hospitals
- Benchmarking necessary for process improvement
 - Data collection of >35,000 patients in Germany already (CPU registry)
- Time matters – in STEMI and beyond
 - Necessity of guideline-adherence and adequate risk assessment for improvement of prognosis
- Good data on quality-of-care in STEMI and NSTEMI patients
 - Need for improvement in patients with troponin-negative NSTE-ACS and low-risk patients
The formation of dedicated chest pain units improved and improves quality-of-care in chest pain patients.
Closing remark

Thank you very much for your attention!