HEART FAILURE

F. Ruschitzka (Zurich, CH)
Professor of Cardiology
Co-Head, Dept of Cardiology
President-elect HFA
University Heart Center
University Hospital
Zürich, Switzerland

Conflicts of Interest
Aventis, Bayer, Biotronik, Cardiorentis, Merck, Novartis, Pfizer, SJM, Servier
Interest in Conflict: none
Peri-infarct Zone Pacing to Prevent Adverse Left Ventricular Remodeling in Patients with Large Myocardial Infarction

Results from the PRomPT Trial

Gregg W. Stone, MD
Eugene S. Chung, Branislav Stancak, Jesper H. Svendsen, Trent M. Fischer, Fred Kueffer, Thomas Ryan, Jeroen Bax, and Angel Leon, for the Post-Myocardial Infarction Remodeling Prevention Therapy (PRomPT) Trial Investigators

Stone GW et al. Eur Heart J 2015; DOI: http://dx.doi.org/10.1093/eurheartj/ehv436, FP 7065

ALBATROSS

Aldosterone Lethal effects Blockade in Acute myocardial infarction Treated with or without Reperfusion to improve Outcome and Survival at Six months follow-up

On behalf of the ALBATROSS investigators

Between December 2010 and October 2013, 126 patients were randomized at 27 sites in Europe, the Middle East, and the United States.

Randomized 1:1:1
- LV and RV pacing (n=41)
 - 1 withdrew
 - 1 withdrawn
 - Successful implant (n=37)
 - 1 withdrew
 - 18-month FU (n=38)
 - As-treated (n=37)
 - ITT (n=41)

- LV pacing only (n=40)
 - 1 withdrew
 - 1 withdrawn
 - Successful implant (n=38)
 - 18-month FU (n=36)
 - As-treated (n=38)
 - ITT (n=40)

- No implant (n=45)
 - 5 withdrew
 - 3 lost to FU
 - 1 missed
 - 18-mo FU

Stone GW et al. Eur Heart J 2015; DOI: http://dx.doi.org/10.1093/eurheartj/ehv436, FP 7065
Paired echocardiographic results between the baseline and 18-month follow-up visits

PRomPT: PRIMARY ENDPOINT – ΔLVEDV

Mean ΔLVEDV (mL)

Control Single Site Dual Site

Months after randomization

N with data:

<table>
<thead>
<tr>
<th>Single-site</th>
<th>37</th>
<th>32</th>
<th>27</th>
<th>27</th>
<th>29</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-site</td>
<td>37</td>
<td>33</td>
<td>34</td>
<td>28</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>Control</td>
<td>44</td>
<td>34</td>
<td>34</td>
<td>33</td>
<td>31</td>
<td>34</td>
</tr>
</tbody>
</table>

Stone GW et al. Eur Heart J 2015; DOI: http://dx.doi.org/10.1093/eurheartj/ehv436, FP 7065
ALBATROSS STUDY DESIGN

AMI (ST+ or ST-) in the first 72hrs

- **Aldosterone blockade**
 - iv K⁺ canrenoate*
 - then
 - spironolactone**

- **control**

 - Randomized Open label N=1600

- Randomized Open label N=1600

- * Soludactone 200mg

- ** Aldactone 25mg od

1° End Point: death, resuscitated cardiac death, VF/VT, indication for defibrillator, heart failure *up to 6-month FU*
PRIMARY END POINT

Death, resuscitated death, VF/VT, indication for ICD or heart failure

N at risks

<table>
<thead>
<tr>
<th></th>
<th>Standard Therapy</th>
<th>MRA Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up (days)</td>
<td>801</td>
<td>802</td>
</tr>
<tr>
<td>0</td>
<td>687</td>
<td>705</td>
</tr>
<tr>
<td>50</td>
<td>669</td>
<td>683</td>
</tr>
<tr>
<td>100</td>
<td>645</td>
<td>660</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>183</td>
</tr>
</tbody>
</table>

HR = 0.97 [0.73-1.28]
P = 0.81

MRA: Mineralocorticoid Receptor Antagonist; VF: Ventricular Fibrillation; VT: Ventricular Tachycardia; ICD: Implantable Cardioverter Defibrillator

G. Montalescot (Paris, FR), FP 1167
DEATH IN PRE-SPECIFIED SUBGROUPS

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Death</th>
<th>Hazard ratio [95% confidence interval]</th>
<th>P for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td></td>
<td>0.65 [0.30, 1.38]</td>
<td>0.57</td>
</tr>
<tr>
<td>Age >= 65</td>
<td></td>
<td>0.68 [0.30, 1.54]</td>
<td></td>
</tr>
<tr>
<td>Age < 65</td>
<td></td>
<td>0.34 [0.04, 2.36]</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td>0.73 [0.13, 4.37]</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td>0.63 [0.27, 1.46]</td>
<td>0.88</td>
</tr>
<tr>
<td>STEMI</td>
<td></td>
<td>0.20 [0.06, 0.70]</td>
<td>0.01</td>
</tr>
<tr>
<td>NSTEMI</td>
<td></td>
<td>3.47 [0.72, 16.72]</td>
<td></td>
</tr>
<tr>
<td>PCI</td>
<td></td>
<td>0.50 [0.20, 1.25]</td>
<td>0.50</td>
</tr>
<tr>
<td>ACE or ARB before randomization</td>
<td></td>
<td>0.83 [0.25, 2.71]</td>
<td>0.60</td>
</tr>
<tr>
<td>Neither ACE nor ARB before randomization</td>
<td></td>
<td>0.55 [0.20, 1.48]</td>
<td></td>
</tr>
<tr>
<td>ACE or ARB after randomization</td>
<td></td>
<td>0.47 [0.14, 1.51]</td>
<td></td>
</tr>
<tr>
<td>Neither ACE nor ARB after randomization</td>
<td></td>
<td>0.94 [0.30, 2.96]</td>
<td>0.40</td>
</tr>
<tr>
<td>BB after randomization</td>
<td></td>
<td>0.72 [0.23, 2.27]</td>
<td>0.96</td>
</tr>
<tr>
<td>No BB after randomization</td>
<td></td>
<td>0.75 [0.25, 2.23]</td>
<td></td>
</tr>
<tr>
<td>ACE/ARB and BB after randomization</td>
<td></td>
<td>0.63 [0.15, 2.64]</td>
<td>0.95</td>
</tr>
<tr>
<td>no ACE/ARB or no BB or neither after randomization</td>
<td></td>
<td>0.67 [0.26, 1.74]</td>
<td></td>
</tr>
<tr>
<td>Killip class >= 2</td>
<td></td>
<td>0.71 [0.24, 2.11]</td>
<td>0.97</td>
</tr>
<tr>
<td>Killip class = 1</td>
<td></td>
<td>0.73 [0.25, 2.11]</td>
<td></td>
</tr>
<tr>
<td>Pulsed blood pressure < 45mmHg</td>
<td></td>
<td>0.96 [0.28, 3.33]</td>
<td>0.51</td>
</tr>
<tr>
<td>Pulsed blood pressure >= 45mmHg</td>
<td></td>
<td>0.56 [0.21, 1.52]</td>
<td></td>
</tr>
<tr>
<td>Left ventricular ejection fraction < 40%</td>
<td></td>
<td>0.62 [0.20, 1.94]</td>
<td>0.98</td>
</tr>
<tr>
<td>Left ventricular ejection fraction >= 40%</td>
<td></td>
<td>0.63 [0.21, 1.92]</td>
<td></td>
</tr>
<tr>
<td>Admission creatinine clearance > 60ml/min</td>
<td></td>
<td>0.88 [0.32, 2.43]</td>
<td>0.40</td>
</tr>
<tr>
<td>Admission creatinine clearance <= 60ml/min</td>
<td></td>
<td>0.45 [0.14, 1.49]</td>
<td></td>
</tr>
<tr>
<td>Admission plasma potassium level <4 mmol/l</td>
<td></td>
<td>0.70 [0.20, 2.49]</td>
<td>0.96</td>
</tr>
<tr>
<td>Admission plasma potassium level >=4 mmol/l</td>
<td></td>
<td>0.67 [0.26, 1.77]</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td>1.33 [0.30, 5.00]</td>
<td>0.27</td>
</tr>
<tr>
<td>No Diabetes</td>
<td></td>
<td>0.50 [0.20, 1.24]</td>
<td></td>
</tr>
<tr>
<td>Pre-hospital randomization</td>
<td></td>
<td>1.33 [0.41, 3.18]</td>
<td>0.08</td>
</tr>
<tr>
<td>In-hospital randomization</td>
<td></td>
<td>0.50 [0.18, 1.07]</td>
<td></td>
</tr>
<tr>
<td>BMI <= 25</td>
<td></td>
<td>0.55 [0.20, 1.51]</td>
<td>0.70</td>
</tr>
<tr>
<td>BMI > 25</td>
<td></td>
<td>0.74 [0.23, 2.32]</td>
<td></td>
</tr>
</tbody>
</table>

G. Montalescot (Paris, FR), FP 1167
Finerenone (BAY 94-8862) is a novel non-steroidal MRA that has greater receptor selectivity than spironolactone and better receptor affinity than eplerenone \textit{in vitro} 1

\textbf{Study objective:} to compare the safety and efficacy of different once-daily oral doses of finerenone with eplerenone in patients who presented in emergency departments with worsening chronic HFrEF with type 2 diabetes mellitus and/or chronic kidney disease (CKD)
ARTS-HF: STUDY FLOW

Enrolment
- Assessed for eligibility (n = 1286)
 - Excluded (n = 220)
 - Did not meet inclusion criteria (n = 191)
 - Declined to participate (n = 21)
 - Other reasons (n = 8)
 - Randomized (n = 1066)

Allocation
- Eplerenone
 - n = 224
 - 2.5–5 mg, n = 173
 - 5–10 mg, n = 165
- Finerenone
 - 2.5–5 mg, n = 173
 - 5–10 mg, n = 165
 - 7.5–15 mg, n = 169
 - 10–20 mg, n = 170
 - 15–20 mg, n = 165

Follow-up
- Discontinued study drug (n = 298 [AE, n = 145; death, n = 29; patient withdrawal, n = 99; other reasons, n = 25])
- Completed (n = 768)

Completed
- Eplerenone
 - n = 144
 - 2.5–5 mg, n = 121
- Finerenone
 - 2.5–5 mg, n = 121
 - 5–10 mg, n = 122
 - 7.5–15 mg, n = 123
 - 10–20 mg, n = 134
 - 15–20 mg, n = 124

AE, adverse event; FAS, full analysis set; PPS, per protocol analysis set; SAF, safety analysis set

G. Filippatos et al. (Athens, GR) FP 3150
The proportion of patients who had an NT-proBNP decrease of more than 30% at day 90 compared with baseline was similar in the finerenone groups and the eplerenone group in the full analysis set.

Error bars show 90% confidence intervals. NT-proBNP, N-terminal of prohormone B-type natriuretic peptide.

G. Filippatos et al. (Athens, GR) FP 3150
ARTS-HF: DEATH FROM ANY CAUSE, CV HOSPITALIZATION, OR WORSENING CHF

Study period

Follow-up

Probability of survival (%)

Time (days)

Eplerenone (n = 207)

Finerenone 7.5–15 mg (n = 158)

Finerenone 2.5–5 mg (n = 162)

Finerenone 10–20 mg (n = 160)

Finerenone 5–10 mg (n = 157)

Finerenone 15–20 mg (n = 158)

G. Filippatos et al. (Athens, GR) FP 3150
Patients with Chronic Chagas Cardiomyopathy
Aged 18 to 75 years, ≥2 positive serological tests for *T. cruzi*, ECG Abnormalities

BNZ 300 mg daily

Placebo

Follow-up
11, 21 days, end of treatment, 6-mos, annually until study end

Primary Outcome
composite of death, resuscitated cardiac arrest, pacemaker/ICD, sustained VT, cardiac transplant, new HF, stroke/TIA and systemic or pulmonary thromboembolic event.

BENEFIT TRIAL: RATIONALE

- **Chagas disease**
 - Third commonest parasitic disease globally
 - Most common form of non-ischemic cardiomyopathy in Latin America
 - 5–7 million infected, 1.4 - 2.1 million develop cardiomyopathy <20-30 yr.

- *T. cruzi* low level parasitemia may be a key factor

- Role of trypanocidal therapy in established Chagas cardiomyopathy is unknown

BENEFIT TRIAL: BASELINES

<table>
<thead>
<tr>
<th></th>
<th>Benznidazole N=1431</th>
<th>Placebo N=1423</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>55.4 years</td>
<td>55.2 years</td>
</tr>
<tr>
<td>Abnormal ECG</td>
<td>93.3%</td>
<td>94.8%</td>
</tr>
<tr>
<td>Previous Heart Failure</td>
<td>9.9%</td>
<td>9.0%</td>
</tr>
<tr>
<td>NYHA Class I</td>
<td>74.4%</td>
<td>73.5%</td>
</tr>
<tr>
<td>Mean LVEF</td>
<td>54.4</td>
<td>54.6</td>
</tr>
<tr>
<td>Wall-motion Abnormality</td>
<td>38.3%</td>
<td>37.6%</td>
</tr>
<tr>
<td>Diuretics</td>
<td>30.4%</td>
<td>29.9%</td>
</tr>
<tr>
<td>ACE-Inhibitor or ARB</td>
<td>49.6%</td>
<td>49.2%</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td>31.0%</td>
<td>30.3%</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>19.9%</td>
<td>18.8%</td>
</tr>
</tbody>
</table>

BENEFIT TRIAL: PRIMARY OUTCOME

(death, resuscitated cardiac arrest, sustained VT, pacemaker/ICD, new HF, cardiac transplant, and stroke/TIA and SE)

Log-Rank p-value=0.31

Proportion with Events

Years of Follow-up

at Risk

<table>
<thead>
<tr>
<th></th>
<th>BNZ</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1431</td>
<td>1423</td>
</tr>
<tr>
<td>1</td>
<td>1312</td>
<td>1316</td>
</tr>
<tr>
<td>2</td>
<td>1246</td>
<td>1233</td>
</tr>
<tr>
<td>3</td>
<td>1178</td>
<td>1155</td>
</tr>
<tr>
<td>4</td>
<td>936</td>
<td>881</td>
</tr>
<tr>
<td>5</td>
<td>695</td>
<td>649</td>
</tr>
<tr>
<td>6</td>
<td>484</td>
<td>459</td>
</tr>
<tr>
<td>7</td>
<td>323</td>
<td>294</td>
</tr>
</tbody>
</table>

BNZ with a 40-80 day course in established Chagas cardiomyopathy did not significantly reduce clinical progression, despite significantly reducing PCR blood *T. cruzi* detection.

BNZ was well tolerated and permanent discontinuation was lower than previously reported (13.4%).

50–75% of all patients with HF suffer from Sleep-Disordered Breathing

- Obstructive sleep apnoea (OSA)
- Central sleep apnoea (CSA) which may manifest as Cheyne–Stokes respiration
- resulting in tissue hypoxia, repetitive arousal from sleep with increased sympathetic nervous system activity

Small and/or uncontrolled studies (and meta-analyses) suggest multiple beneficial effects of ASV on surrogates in HF

Post-hoc data from CANPAP (N=258) suggest that CPAP might improve mortality when CSA was controlled (AHI < 15) in HF patients with CSA and EF < 40%

SERVE-HF: ADAPTIVE SERVO-VENTILATION

- Non-invasive ventilatory therapy that supports inspiration when breathing amplitude is reduced and ensures sufficient respiration when respiratory effort is absent (Variable IPAP)

- Upper airway patency is ensured by provision of end-expiratory pressure

- Although algorithms employed by different ASV devices vary slightly, the principle of treatment is the same: back-up rate ventilation with adaptive pressure support

SERVE-HF: BASELINE

<table>
<thead>
<tr>
<th></th>
<th>Control (n=659)</th>
<th>ASV (n=666)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>69.3±10.4</td>
<td>69.6±9.5</td>
</tr>
<tr>
<td>Male</td>
<td>90.0%</td>
<td>89.9%</td>
</tr>
<tr>
<td>NYHA class III or IV, n (%)</td>
<td>70.3%</td>
<td>70.5%</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>32.5±8.0</td>
<td>32.2±7.9</td>
</tr>
<tr>
<td>Ischaemic HF aetiology, n (%)</td>
<td>57.0%</td>
<td>59.7%</td>
</tr>
<tr>
<td>Implanted device, n (%)</td>
<td>55.2%</td>
<td>54.5%</td>
</tr>
<tr>
<td>eGFR, mL/min/1.73m²</td>
<td>59.3±20.8</td>
<td>57.8±21.1</td>
</tr>
<tr>
<td>Six-minute walk distance, m</td>
<td>337.9±127.5</td>
<td>334.0±126.4</td>
</tr>
<tr>
<td>ACEI/ARB, n (%)</td>
<td>91.5%</td>
<td>92.0%</td>
</tr>
<tr>
<td>β-blockers, n (%)</td>
<td>92.7%</td>
<td>91.9%</td>
</tr>
<tr>
<td>Antiarrhythmics, n (%)</td>
<td>13.5%</td>
<td>19.2%</td>
</tr>
</tbody>
</table>

p=0.005

SERVE-HF: PRIMARY ENDPOINT NEUTRAL
TIME TO FIRST EVENT OF ALL-CAUSE DEATH, LIFE-SAVING CARDIOVASCULAR INTERVENTION, OR UNPLANNED HOSPITALIZATION FOR WORSENING CHRONIC HF

Hazard ratio, 1.13 (95% CI, 0.97-1.31)

SERVE-HF: A RUDE AWAKENING

Death from any cause

Cardiovascular Death

Hazard ratio, 1.28 (95% CI, 1.06–1.55)
P = 0.01

Hazard ratio, 1.34 (95% CI, 1.09–1.65)
P = 0.006

Heart Failure 2016
21 – 24 May, FLORENCE, Italy

4 700+ healthcare professionals
90+ countries represented
4 days of science
1 700+ abstracts and cases submitted
300+ expert faculty members
100+ scientific sessions
40+ industry sessions and workshops

ESC/ HFA Guidelines on HEART FAILURE

FOCUS ON: ACUTE HEART FAILURE

« Heart failure: State of the Art »
Merci

Frank Ruschitzka, MD, FRCP, FESC
Professor of Cardiology
University Zürich
E-mail: frank.ruschitzka@usz.ch
Access arm:
- Telemedicine guided,
- No audible alert for fluid retention

Control arm:
- Standard clinical assessment,
- No alert for fluid retention

Risk stratified:
- NYHA II vs. III,
- Ischemic vs. Non-Ischemic,
- Atrial Fibrillation,
- Primary vs. Secondary Prevention (VT/VF before Implant)
OPTILINK HF: PRIMARY ENDPOINT: ALL-CAUSE DEATH OR CV HOSPITALISATION

Hazard ratio = 0.867 (0.72, 1.044)
Stratified log-rank p-value = 0.132

Number at risk
Control 497 361 302 175 84 64 45 29
Intervention 505 361 310 183 94 80 58 35
SERVE-HF: ALL-CAUSE DEATH

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ASV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>659</td>
<td>666</td>
</tr>
<tr>
<td>12</td>
<td>563</td>
<td>555</td>
</tr>
<tr>
<td>24</td>
<td>493</td>
<td>466</td>
</tr>
<tr>
<td>36</td>
<td>334</td>
<td>304</td>
</tr>
<tr>
<td>48</td>
<td>213</td>
<td>189</td>
</tr>
<tr>
<td>60</td>
<td>117</td>
<td>97</td>
</tr>
</tbody>
</table>

SERVE-HF: PRIMARY ENDPOINT NEUTRAL
TIME TO FIRST EVENT OF ALL-CAUSE DEATH, LIFE-SAVING CARDIOVASCULAR INTERVENTION, OR UNPLANNED HOSPITALIZATION FOR WORSENING CHRONIC HF

Cumulative incidence rate (%)

Months since Randomisation

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ASV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>659</td>
<td>666</td>
</tr>
<tr>
<td>6</td>
<td>463</td>
<td>435</td>
</tr>
<tr>
<td>12</td>
<td>365</td>
<td>341</td>
</tr>
<tr>
<td>24</td>
<td>222</td>
<td>197</td>
</tr>
<tr>
<td>36</td>
<td>136</td>
<td>122</td>
</tr>
<tr>
<td>48</td>
<td>77</td>
<td>52</td>
</tr>
</tbody>
</table>

HEART FAILURE

F. Ruschitzka (Zurich, CH)
Professor of Cardiology
Co-Head, Dept of Cardiology
President-elect HFA
University Heart Center
University Hospital
Zürich, Switzerland

Conflicts of Interest
Aventis, Bayer, Biotronik, Cardiorentis, Merck, Novartis, Pfizer, SJM, Servier
Interest in Conflict: none