ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: Addenda

The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC

Authors/Task Force Members: John J. V. McMurray (Chairperson) (UK)*, Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Angelo Auricchio (Switzerland), Michael Böhm (Germany), Kenneth Dickstein (Norway), Volkmar Falk (Switzerland), Gerasimos Filippatos (Greece), Cândida Fonseca (Portugal), Miguel Angel Gomez Sanchez (Spain), Tiny Jaarsma (Sweden), Lars Køber (Denmark), Gregory Y. H. Lip (UK), Aldo Pietro Maggioni (Italy), Alexander P Arkomenko (Ukraine), Burkert M. Pieske (Austria), Bogdan A. Popescu (Romania), Per K. Rønnevik (Norway), Frans H. Rutten (The Netherlands), Juerg Schwitter (Switzerland), Petar Seferovic (Serbia), Janina Stepinska (Poland), Pedro T. Trindade (Switzerland), Adriaan A. Voors (The Netherlands), Faiez Zannad (France), Andreas Zeiher (Germany).

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax (CPG Chairperson) (The Netherlands), Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (The Netherlands), Paulus Kirchhof (Germany/UK), Juhani Knuuti (Finland), Philippe Kolh (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Popescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France), Stephan Windecker (Switzerland).

Document Reviewers: Theresa McDonagh (CPG Co-Review Coordinator) (UK), Udo Sechtem (CPG Co-Review Coordinator) (Germany), Luis Almenar Bonet (Spain), Panayiotis Avraamides (Cyprus), Hisham A. Ben Lamin (Libya), Michele Brignole (Italy), Antonio Coca (Spain), Peter Cowburn (UK), Henry Dargie (UK), Perry Elliott (UK), Frank Arnold Flachskampf (Sweden), Guido Francesco Guida (Italy), Suzanna Hardman (UK), Bernard Jung

* Corresponding author. Chairperson: Professor John J. V. McMurray, University of Glasgow G12 8QQ, UK. Tel: +44 141 330 3479, Fax: +44 141 330 6955, Email: john.mcmurray@glasgow.ac.uk

Other ESC entities having participated in the development of this document:
Associations: European Association for Cardiovascular Prevention & Rehabilitation (EACPR), European Association of Echocardiography (EAE), European Heart Rhythm Association (EHRA), European Association of Percutaneous Cardiovascular Interventions (EAPCI)
Working Groups: Acute Cardiac Care, Cardiovascular Pharmacology and Drug Therapy, Cardiovascular Surgery, Grown-up Congenital Heart Disease, Hypertension and the Heart, Myocardial and Pericardial Diseases, Pulmonary Circulation and Right Ventricular Function, Thrombosis, Valvular Heart Disease
Councils: Cardiovascular Imaging, Cardiovascular Nursing and Allied Professions, Cardiology Practice, Cardiovascular Primary Care

The content of these European Society of Cardiology (ESC) Guidelines has been published for personal and educational use only. No commercial use is authorized. No part of the ESC Guidelines may be translated or reproduced in any form without written permission from the ESC. Permission can be obtained upon submission of a written request to Oxford University Press, the publisher of the European Heart Journal and the party authorized to handle such permissions on behalf of the ESC.

Disclaimer: The ESC Guidelines represent the views of the ESC and were arrived at after careful consideration of the available evidence at the time they were written. Health professionals are encouraged to take them fully into account when exercising their clinical judgement. The guidelines do not, however, override the individual responsibility of health professionals to make appropriate decisions in the circumstances of the individual patients, in consultation with that patient, and where appropriate and necessary the patient’s guardian or carer. It is also the health professional’s responsibility to verify the rules and regulations applicable to drugs and devices at the time of prescription.

© The European Society of Cardiology 2012. All rights reserved. For permissions please email: journals.permissions@oup.com
The disclosure forms of the authors and reviewers are available on the ESC website www.escardio.org/guidelines

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Heart failure • Natriuretic peptides • Ejection fraction • Renin–angiotensin system • Beta-blockers • Digitalis • Transplantation</th>
</tr>
</thead>
</table>
Web Table 3 Aetiology of heart failure

There is no agreed or satisfactory classification for the causes of HF, with much overlap between potential categories.

Myocardial disease

1. **Coronary artery disease**
2. **Hypertension**
3. **Cardiomyopathy**
 - a. Familial
 - i. Hypertrophic
 - ii. Dilated
 - iii. Arrhythmogenic right ventricular cardiomyopathy
 - iv. Restrictive
 - v. Left ventricular non-compaction
 - b. Acquired
 - i. Myocarditis (inflammatory cardiomyopathy)
 - Infective
 - Bacterial
 - Spirochaetal
 - Fungal
 - Protozoal
 - Parasitic
 - Rickettsial
 - Viral
 - Immune-mediated
 - Tetanus toxoid, vaccines, serum sickness
 - Drugs
 - Lymphocytic/giant cell myocarditis
 - Sarcoidosis
 - Autoimmune
 - Eosinophilic (Churg–Strauss)
 - Toxic
 - Drugs (e.g. chemotherapy, cocaine)
 - Alcohol
 - Heavy metals (copper, iron, lead)
 - ii. Endocrine/nutritional
 - Phaeochromocytoma
 - Vitamin deficiency (e.g. thiamine)
 - Selenium deficiency
 - Hypophosphataemia
 - Hypocalcaemia
 - iii. Pregnancy
 - iv. Infiltration
 - Amyloidosis
 - Malignancy

Valvular heart disease

- Mitral
- Aortic
- Tricuspid
- Pulmonary

Pericardial disease

- Constrictive pericarditis
- Pericardial effusion

Endocardial disease

- Endomyocardial diseases with hypereosinophilia [hypereosinophilic syndromes (HES)]
- Endomyocardial disease without hypereosinophilia [e.g. endomyocardial fibrosis (EMF)]
- Endocardial fibroelastosis

Congenital heart disease

Arrhythmia

- Tachyarrhythmia
- Atrial
- Ventricular
- Bradycardia
- Sinus node dysfunction

Conduction disorders

- Atrioventricular block

High output states

- Anaemia
- Seizure
- Thyrotoxicosis
- Paget’s disease
- Arteriovenous fistula

Volume overload

- Renal failure
- Iatrogenic (e.g. post-operative fluid infusion)

AV = atrioventricular; HF = heart failure.

*Both peripheral arterial and myocardial factors contribute to the development of heart failure.

*Other inherited diseases may have cardiac effects, e.g. Fabry disease.
A very large number of variables have been shown to relate to outcome in HF (and new prognostic markers are regularly identified). This table lists some of the more commonly described prognostic variables.

Demographics, history, and physical examination

- Age, sex, ethnicity, NYHA class, body mass index.
- Signs of congestion, increased jugular venous pressure, third heart sound, low systolic blood pressure, higher heart rate.
- Diabetes mellitus, renal dysfunction, depression, COPD.
- Ischaemic aetiology, history of myocardial infarction.

Routine laboratory tests

- Serum sodium
- Liver enzymes, bilirubin
- Serum creatinine/creatinine clearance/eGFR
- BUN/urea and markers of tubular injury
- Serum albumin
- Uric acid
- Haemoglobin
- Red cell distribution width
- Troponin I/T
- Urinary albumin creatinine ratio

Neurohormones, cytokines, and related factors

- Plasma renin activity
- Angiotensin II
- Aldosterone
- Catecholamines
- (Big) endothelin-1
- Adrenomedullin
- Natriuretic peptides
 - Vasopressin/Co-peptin
 - Cytokines
 - sST-2
 - Galectin-3
- Collagen markers

Electrical variables

- QRS width
- LV hypertrophy
- Atrial fibrillation
- Complex ventricular arrhythmias
- Heart rate variability

Imaging variables

- LV internal dimensions and fractional shortening
- Cardiotoracic ratio on chest X-ray
- Wall motion index (various)
- Ejection fraction
- Left atrial size
- Restrictive filling pattern/short deceleration time
- Right ventricular function (various)
- Inflammation (contrast-enhanced CMR), iron content (in thalassaemia: CMR)
- Amyloidosis (contrast kinetics in CMR)
- Ischaemia and viability imaging, arrhythmogenic substrates

Exercise test/haemodynamic variables (rest/exercise)

- VO$_2$
- VE/VTslope
- Max/peak (normal >20 mL/kg/min)d
- 6-min walk distance (normal >600 m)d
- Cardiac index (normal >2.5 L/min/m2)
- LV end-diastolic pressure/pulmonary artery wedge pressure (normal <12 mmHg)

BUN = blood urea nitrogen; CMR = cardiac magnetic resonance; COPD = chronic obstructive pulmonary disease; eGFR = estimated glomerular filtration rate; HF = heart failure; LV = left ventricular; NYHA = New York Heart Association; sST-2 = soluble ST-2; VO$_2$ = peak oxygen consumption.

aThis list is not intended to be comprehensive and other circulating factors may also be associated with prognosis.

bVarious peptides including C-terminal, N-terminal, and mid-regional are predictive of outcome.

cVarious measures/classifications can be used, and no single threshold for normal/abnormal can be given.

dFunctional capacity varies greatly according to prior fitness, age, and sex; values given are a guideline for older (>65 years) adults.
Web Table I: Practical guidance on the use of angiotensin-converting enzyme inhibitors (or an angiotensin II receptor blocker) in patients with systolic heart failure

WHY?
To improve symptoms and exercise capacity, reduce the risk of HF hospitalization, and increase survival

IN WHOM AND WHEN?
Indications
- Potentially all patients with HF and an EF ≤40%
- First-line treatment (along with beta-blockers and an MRA) in patients with NYHA class II–IV HF; start as early as possible in the course of disease.
- ACE inhibitors are also of benefit in patients with asymptomatic LV systolic dysfunction (NYHA class I)

Contraindications
- History of angioedema
- Known bilateral renal artery stenosis
- Pregnancy/risk of pregnancy

Caution/seek specialist advice
- Significant hyperkaema (K+ >5.0 mmol/L)
- Significant renal dysfunction (creatinine >22.1 μmol/L [>2.5 mg/dL] or eGFR <30 mL/min/1.73 m²)
- Symptomatic or severe asymptomatic hypotension (systolic blood pressure <90 mmHg)

Drug interactions to look out for
- K+ sparing diuretics, e.g. amiloride and triamterene (beware combination preparations with furosemide), MRAs and renin inhibitors
- NSAIDs
- Trimethoprim/trimethoprim-sulfamethoxazole
- ‘Low-salt’ supplements with a high K+ content

WHERE?
- In the community for most patients
- Exceptions—see Caution/seek specialist advice

WHICH ACE INHIBITOR AND WHAT DOSE?—see Table 14

HOW TO USE?
Check renal function and electrolytes
- Start with a low dose (see Table 14)
- Double the dose at not less than 2-week intervals in the community. More rapid dose up-titration may be carried out in patients in hospital or who are otherwise closely monitored and tolerability permitted
- Aim for target dose (see above) or, failing that, the highest tolerated dose

Remember:
- some ACE inhibitor (or ARB) is better than no ACE inhibitor
- Re-check blood chemistry (urea/BUN, creatinine, K+) 1–2 weeks after initiation and 1–2 weeks after final dose titration
- Monitor blood chemistry 4 monthly thereafter

When to stop up-titration, reduce dose, stop treatment—see PROBLEM SOLVING
- A specialist HF nurse may assist with education of the patient, follow-up (in person or by telephone), biochemical monitoring and dose up-titration

PROBLEM SOLVING
Asymptomatic low blood pressure
- Doses do not usually require any change in therapy

Symptomatic hypotension
- Dizziness/light headedness is common and often improves with time—patients should be reassured
- Reconsider need for nitrates, calcium-channel blockers, and other vasodilators and reduce dose/stop, if possible
- If no signs of symptoms of congestion, consider reducing diuretic dose
- If these measures do not solve problem, seek specialist advice

Cough
- Cough is common in patients with HF, many of whom have smoking-related lung disease
- Cough is also a symptom of pulmonary oedema, which should be excluded when a new worsening cough develops

ACE inhibitor-induced cough does not always require treatment discontinuation
- When a troublesome cough does develop (e.g. one stopping the patient from sleeping) and can be proved to be due to ACE inhibition (i.e. recurs after ACE inhibitor withdrawal and re-challenge), substitution of an ARB is recommended

Worsening renal function and hyperkaema
- Some rise in urea (BUN), creatinine, and potassium is to be expected after an ACE inhibitor; if an increase is small and asymptomatic, no action is necessary
- An increase in creatinine of up to 50% above baseline, or 266 μmol/L [2.5 mg/dL] eGFR <25 mL/min/1.73 m²; whichever is the smaller, is acceptable
- An increase in potassium to ≤5.5 mmol/L is acceptable
- If urea, creatinine, or potassium dose rises excessively, consider stopping concomitant nephrotoxic drugs (e.g. NSAIDs) and other potassium supplements or retaining agents (triamterene, amiloride) and, if any signs of congestion, reducing the dose of diuretic
- If greater rises in creatinine or potassium than those outlined above persist despite adjustment of concomitant medications, the dose of the ACE inhibitor (or ARB) should be halved and blood chemistry re-checked within 1–2 weeks; if there is still an unsatisfactory response, specialist advice should be sought
- If potassium rises to >5.5 mmol/L or creatinine increases by >100% or to >310 μmol/L (3.5 mg/dL) eGFR <20 mL/min/1.73 m², the ACE inhibitor (or ARB) should be stopped and specialist advice sought
- Blood chemistry should be monitored frequently and serially until potassium and creatinine have plateaued

Web Table 11: Practical guidance on the use of angiotensin-converting enzyme inhibitors (or an angiotensin II receptor blocker) in patients with systolic heart failure

<table>
<thead>
<tr>
<th>ACE inhibitor (or ARB) use</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; BUN = blood urea nitrogen; EF = ejection fraction; HF = heart failure; LV = left ventricular; MRA = mineralocorticoid receptor antagonist; NSAID = non-steroidal anti-inflammatory drug; NYHA = New York Heart Association.</td>
<td>AVoid NSAIDs unless essential.</td>
</tr>
<tr>
<td>Note: it is very rarely necessary to stop an ACE inhibitor (or ARB), and clinical deterioration is likely if treatment is withdrawn. Ideally, specialist advice should be sought before treatment discontinuation.</td>
<td>Calcium-channel blockers should be discontinued unless absolutely necessary, and diuretics and perindopril are potentially harmful because of their negative inotropic action.</td>
</tr>
</tbody>
</table>

The safety of an ARB in patients developing angioedema with an ACE inhibitor is uncertain.

Rein inhibitors are not recommended in heart failure.

ACE inhibitors are also of benefit in patients with asymptomatic LV systolic dysfunction (NYHA class I)
To improve symptoms, reduce the risk of HF hospitalization and increase survival

IN WHOM AND WHEN?

Indications
- Potentially all patients with stable mild or moderate systolic HF (EF ≤ 40%); patients with severe HF also benefit from beta-blockers but treatment should be started under the care of a specialist.
- First-line treatment, along with an ACE inhibitor and an MRA, in patients with stabilized HF; start as early as possible in the course of disease.

Contraindications
- Asthma (COPD is not a contraindication).
- Second- or third-degree AV block (in the absence of a permanent pacemaker).

Cautions/seek specialist advice
- Severe (NYHA class IV) HF
- Current or recent (<4 weeks) exacerbation of HF (e.g., hospital admission with worsening HF), heart block, or heart rate <60 b.p.m.
- Persisting signs of congestion, hypotension/low blood pressure (systolic <90 mmHg), raised jugular venous pressure, ascites, marked peripheral oedema—try to relieve congestion and achieve ‘euvolaemia’ before starting beta-blocker.

Drug interactions
- To look out for (because of risk of bradycardia/atrioventricular block)
- Verapamil, diltiazem (should be discontinued)!
- Digoxin, amiodarone, ivabradine

WHERE?

- In the community in stable patients (NYHA class IV/severe HF patients and those with a current/recent exacerbation should be referred for specialist advice).
- In patients hospitalized with worsening HF—after stabilizing, relieving congestion, and, if possible, restoring ‘euvolaemia’ (but ideally before discharge).
- Other exceptions—see Cautions/see specialist advice.

WHICH BETA-BLOCKER AND WHAT DOSE? - see Table 14

HOW TO USE?

- Start with a low dose (see Table 14).
- Double the dose at not less than 2-week intervals (slower up-titration may be needed in some patients).
- Aim for target dose (see above) or, failing that, the highest tolerated dose.
- Remember: some beta-blocker is better than no beta-blocker.
- Monitor heart rate, blood pressure, and clinical status (symptoms, signs—especially signs of congestion, body weight).
- When to stop up-titration, reduce dose, stop treatment—see PROBLEM SOLVING.

ADVICE TO PATIENT

- Explain expected benefits (see WHY?) and mention possibility of temporary adverse effects.
- Treatment is given to improve symptoms, to prevent worsening of HF leading to hospital admission, and to increase survival.
- Symptomatic improvement may develop slowly after starting treatment, sometimes taking 3–6 months or longer.
- Temporary symptomatic deterioration may occur during initiation or up-titration phase; in the long term, beta-blockers improve well-being.
- Advise patient to report deterioration (see PROBLEM SOLVING) and that deterioration (tiredness, fatigue, breathlessness) can usually be easily managed by adjustment of other medication; patients should be advised not to stop beta-blocker therapy without consulting the physician.
- To detect and to treat deterioration early, patients should be encouraged to weigh themselves daily (after waking, before dressing, after voiding, before eating) and to increase their diuretic dose should their weight increase, persistently (>2 days), by >1.5–2.0 kg.

PROBLEM SOLVING

- Worsening symptoms or signs (e.g., increasing dyspnoea, fatigue, oedema, weight gain).
- If increasing congestion, increase dose of diuretic or halve dose of beta-blocker (if increasing diuretic dose does not work).
- If marked fatigue (or bradycardia—see below), halve dose of beta-blocker (rarely necessary); review patient in 1–2 weeks; if not improved, seek specialist advice.
- If serious deterioration, halve dose of beta-blocker or stop this treatment (rarely necessary); review patient in 1–2 weeks; if not improved, seek specialist advice.

Low heart rate

- If <50 b.p.m. and worsening symptoms, halve dose of beta-blocker, or, if severe deterioration, stop beta-blocker (rarely necessary).
- Review need for other heart rate-slowing drugs (e.g., digoxin, amiodarone, diltiazem, or verapamil?).
- Arrange electrocardiogram to exclude heart block.
- Seek specialist advice.

Asymptomatic low blood pressure

- Does not usually require any change in therapy.

Symptomatic hypotension

- If dizziness, light headedness, or confusion and a low blood pressure, reconsider need for nitrates, calcium-channel blockers, and other vasodilators and reduce/stop, if possible.
- If no signs or symptoms of congestion, consider reducing diuretic dose.
- If these measures do not solve problem, seek specialist advice.

WHEN TO STOP UP-TITRATION, REDUCE DOSE, STOP TREATMENT—SEE PROBLEM SOLVING.

- A specialist HF nurse may assist with education of the patient, follow-up (in person or by telephone), and dose up-titration.

WHY?

- To improve symptoms, reduce the risk of HF hospitalization and increase survival.

ACE = angiotensin-converting enzyme; **AV** = atrioventricular; **COPD** = chronic obstructive pulmonary disease; **HF** = heart failure; **LV** = left ventricular; **MRA** = mineralocorticoid receptor antagonist; **NSAID** = non-steroidal anti-inflammatory drug; **NYHA** = New York Heart Association.

Note: Beta-blockers should not be stopped suddenly unless absolutely necessary (there is a risk of a ‘rebound’ increase in myocardial ischaemia or infarction and arrhythmias). Ideally, specialist advice should be sought before treatment discontinuation.

The recommendations in this table represent expert opinion based upon relevant clinical trials (drugs, titration schedules, target doses, patient monitoring, treatment benefits, and reported adverse effects) and clinical experience.

Calcium-channel blockers should be discontinued unless absolutely necessary, and diltiazem and verapamil are potentially harmful because of their negative inotropic effect.

Metoprolol tartrate should not be used in preference to an evidence-based beta-blocker in HF.

This is generally good advice for all patients with HF.
<table>
<thead>
<tr>
<th>Web Table 13: Practical guidance on the use of mineralocorticoid receptor antagonists in patients with systolic heart failure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WHY?</td>
<td>To improve symptoms, reduce the risk of HF hospitalization, and increase survival</td>
</tr>
<tr>
<td>IN WHOM AND WHEN?</td>
<td></td>
</tr>
<tr>
<td>Indications</td>
<td>Potentially all patients with persisting symptoms (NYHA Class II-IV) and an EF (\leq 35%) despite treatment with an ACE inhibitor (or ARB) and beta-blocker</td>
</tr>
<tr>
<td>Cautions/seek specialist advice</td>
<td></td>
</tr>
<tr>
<td>Significant hyperkalaemia (K(^+) > 5.0 mmol/L)(^a)</td>
<td></td>
</tr>
<tr>
<td>Significant renal dysfunction (creatinine >221 μmol/L [>2.5 mg/dL] or eGFR <30 mL/min/1.73 m(^2))(^a)</td>
<td></td>
</tr>
<tr>
<td>Drug interactions to look out for</td>
<td></td>
</tr>
<tr>
<td>K(^+) supplements/ K(^+)-sparring diuretics (e.g. amiloride and triamterene; beware combination preparations with furosemide)</td>
<td></td>
</tr>
<tr>
<td>ACE inhibitors/ARBs/renin inhibitors(^c)</td>
<td></td>
</tr>
<tr>
<td>NSAIDs(^d)</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim/trimethoprim-sulfamethoxazole</td>
<td></td>
</tr>
<tr>
<td>'Low-salt' substitutes with a high K(^+) content</td>
<td></td>
</tr>
<tr>
<td>Contraindication</td>
<td>Eplerenone–strong CYP3A4 inhibitors, e.g. ketoconazole, itraconazole, nefazodone, telithromycin, clarithromycin, ritonavir; and nelfinavir</td>
</tr>
<tr>
<td>WHERE?</td>
<td>In the community or in the hospital</td>
</tr>
<tr>
<td>Exceptions—see Cautions/seek specialist advice</td>
<td></td>
</tr>
<tr>
<td>**WHICH MRA AND WHAT DOSE? - see Table 14(^e)</td>
<td></td>
</tr>
<tr>
<td>HOW TO USE?</td>
<td></td>
</tr>
<tr>
<td>Check renal function and electrolytes (particularly K(^+))</td>
<td></td>
</tr>
<tr>
<td>Start with a low dose (see above)</td>
<td></td>
</tr>
<tr>
<td>Consider dose up-titration after 4–8 weeks</td>
<td></td>
</tr>
<tr>
<td>Check blood chemistry at 1 and 4 weeks after starting/increasing dose and at 8 and 12 weeks; 6, 9, and 12 months; 4-monthly thereafter</td>
<td></td>
</tr>
<tr>
<td>If K(^+) rises above 5.5 mmol/L or creatinine rises to 221 μmol/L (2.5 mg/dL) or eGFR <30 mL/min/1.73 m(^2), halve dose and monitor blood chemistry closely</td>
<td></td>
</tr>
<tr>
<td>If K(^+) rises to >6.0 mmol/L or creatinine to >310 μmol (3.5 mg/dL) or eGFR <20 mL/min/1.73 m(^2), stop MRA immediately and seek specialist advice</td>
<td></td>
</tr>
<tr>
<td>A specialist HF nurse may assist with education of the patient, follow-up (in person or by telephone), biochemical monitoring, and dose up-titration</td>
<td></td>
</tr>
<tr>
<td>ADVICE TO PATIENT</td>
<td></td>
</tr>
<tr>
<td>Explain expected benefits (see WHY?)</td>
<td></td>
</tr>
<tr>
<td>Treatment is given to improve symptoms, to prevent worsening of HF leading to hospital admission, and to increase survival</td>
<td></td>
</tr>
<tr>
<td>Symptomatic improvement occurs within a few weeks to a few months of starting treatment</td>
<td></td>
</tr>
<tr>
<td>Avoid NSAIDs(^d) not prescribed by a physician (i.e. purchased over-the-counter) and salt substitutes high in K(^+)</td>
<td></td>
</tr>
<tr>
<td>If diarrhoea or vomiting occurs, patients should stop the MRA and contact the physician/nurse</td>
<td></td>
</tr>
<tr>
<td>PROBLEM SOLVING</td>
<td>Worsening renal function/hyperkalaemia</td>
</tr>
<tr>
<td>See HOW TO USE?</td>
<td></td>
</tr>
<tr>
<td>The main concern is hyperkalaemia (>6.0 mmol/L); although this was uncommon in RALES and EMPHASIS-HF, it has been seen more commonly in clinical practice</td>
<td></td>
</tr>
<tr>
<td>Conversely, a high-normal K(^+) level may be desirable in patients with HF especially if they are taking digoxin</td>
<td></td>
</tr>
<tr>
<td>It is important to avoid other K(^+)-retaining drugs (e.g. K(^+)-sparring diuretics such as amiloride and triamterene) and nephrotoxic agents (e.g. NSAIDs(^d))</td>
<td></td>
</tr>
<tr>
<td>The risk of hyperkalaemia and renal dysfunction when an MRA is given to patients already taking both an ACE inhibitor and ARB is higher than when an MRA is added to just an ACE inhibitor or ARB given singly; this triple combination of an ACE inhibitors, ARB and MRA is NOT recommended (see recommendations below)</td>
<td></td>
</tr>
<tr>
<td>Some 'low-salt' substitutes have a high K(^+) content</td>
<td></td>
</tr>
<tr>
<td>Male patients treated with spironolactone may uncommonly develop breast discomfort or gynaecomastia (switching to eplerenone should be considered)</td>
<td></td>
</tr>
</tbody>
</table>

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; MRA, mineralocorticoid receptor antagonist; NSAID = non-steroidal anti-inflammatory drug; NYHA = New York Heart Association.

\(^a\)The recommendations in this table represent expert opinion based upon relevant clinical trials (drugs, titration schedules, target doses, patient monitoring, treatment benefits, and reported adverse effects) and clinical experience.

\(^b\)It is extremely important to adhere to these cautions and doses to avoid serious hyperkalaemia.

\(^c\)Renin inhibitors are not recommended in heart failure.

\(^d\)Avoid NSAIDs unless essential.

\(^e\)Cancenone is not recommended in heart failure.
Web Table 15: Practical guidance on the use of diuretics in patients with heart failure (with a reduced or preserved ejection fraction)

WHY?
To relieve breathlessness and oedema in patients with symptoms and signs of congestion.

IN WHOM AND WHEN?
Indications
- Potentially all patients with symptoms of congestion, irrespective of EF.

Use
- Should be used in combination with an ACE inhibitor (or ARB), beta-blocker, and an MRA in patients with a reduced EF.
- Use minimum dose necessary to maintain euvoledama—the patient’s ‘dry weight’ (i.e. to keep the patient free of symptoms and signs of congestion).
- Dose may need to be increased or decreased according to the patient’s volume status; patients can be educated and trained to alter their own diuretic dose, according to need on symptoms, signs and weight changes (see Section 14).

Contraindications
- Not indicated if the patient has never had symptoms or signs of congestion.

Cautions/seek specialist advice
- Significant hypokalaemia (K+ <3.5 mmol/L)—may be made worse by diuretic.
- Significant renal dysfunction (creatinine >221 μmol/L [>2.5 mg/dL] or eGFR <30 mL/min/1.73 m2)—may be made worse by diuretic or patient may not respond to diuretic (especially thiazide diuretic).
- Symptomatic or severe asymptomatic hypotension (systolic blood pressure <90 mmHg)—may be made worse by diuretic-induced hypovolaemia.

Drug interactions to look out for
- Combination with ACE inhibitor ARB or renin inhibitors—a risk of hypotension (usually not a problem).
- Combination with other diuretics (e.g. loop plus thiazide)—risk of hypovolaemia, hypotension, hypokalaemia, and renal impairment.
- NSAIDs—a may attenuate effect of diuretic.

WHERE?
In the community for most patients.

WHICH DIURETIC AND WHAT DOSE? - see Table 16

HOW TO USE?

1. **Check renal function and electrolytes**
2. **Start with a low dose** (see Table 16).
3. **Adjust dose according to symptoms and signs of congestion, blood pressure, and renal function**
4. **Re-check blood chemistry 1–2 weeks after initiation and after any increase in dose** (urea/BUN, creatinine, K+).
5. **When to stop up-titration, reduce dose, stop treatment**—see PROBLEM SOLVING.

A specialist HF nurse may assist with education of the patient, follow-up (in person or by telephone), biochemical monitoring, and dose adjustment (including patient training in dose adjustment).

ADVISE TO PATIENT

Explain expected benefits
- Symptoms improve quickly—usually within days of starting treatment.

Advise patients to report principal adverse effects (e.g. thirst)
- Avi excessive consumption of hypotonic fluids, which can cause hyponatraemia) and dizziness/asymptomatic hypotension—see PROBLEM SOLVING.

Advise patients to avoid NSAIDs—not prescribed by a physician (i.e. purchased over-the-counter)—may cause diuretic resistance and renal impairment.

Patient may be trained to adjust dose based on symptoms, signs, and changes in weight (if regular weighing).

Dose may need to be decreased if fluid loss (e.g. due to diarrhoea/vomiting, excessive sweating).

PROBLEM SOLVING

Asymptomatic low blood pressure
- Dose may be reduced if no symptoms or signs of congestion.

Symptomatic hypotension
- Causing dizziness/light headedness—reduce dose if no symptoms or signs of congestion
- Reconsider need for nitrates, CCBs[a] and other vasodilators.
- If these measures do not solve problem, seek specialist advice.

Hyponatraemia/hypomagnesaemia
- Increase ACE inhibitor/ARB dose, add MRA, potassium supplements; magnesium supplements.

Hypokalaemia
- Volume depleted: stop thiazide or switch to loop diuretic, if possible; reduce dose/stop loop diuretics if possible; volume overloaded: fluid restriction; increase dose of loop diuretic; consider AVP antagonist (e.g. tolvaptan if available); i.v. inotropic support; consider ultrafiltration.

Hyperuricaemia/gout
- Consider allopurinol prophylaxis; for symptomatic gout use colchicine for pain relief; avoid NSAIDs.

Hypovolaemia/dehydration
- Assess volume status; consider diuretic dosage reduction.
- Insufficient diuretic response/diuretic resistance.
- Check compliance and fluid intake; increase dose of diuretic; consider switching from furosemide to bumetanide or torasemide; add MRA/increase dose of MRA; combine loop diuretic and thiazide/metolazone; administer loop diuretic twice (or more times) daily or on empty stomach/consider short-term i.v. infusion of loop diuretic; consider ultrafiltration.

Renal impairment (rising creatinine/BUN–urea)
- Check for hypovolaemia/dehydration; exclude use of other nephrotoxic agents, e.g. NSAIDs, trimethoprim; withhold MRA; if using concomitant loop and thiazide diuretic, stop thiazide diuretic; consider reducing dose of ACE inhibitor/ARB; consider haemofiltration/dialysis.

ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; AVP = arginine vasopressin; BUN = blood urea nitrogen; CCBs = calcium-channel blockers; EF = ejection fraction; HF = heart failure; i.v. = intravenous; MRA = mineralocorticoid receptor antagonist; NSAIDs = non-steroidal anti-inflammatory drugs.

[a]Cautions/seek specialist advice

[b]Not indicated if the patient has never had symptoms or signs of congestion.

[c]®Renin inhibitors are not recommended in heart failure.

[d]Avoid NSAIDs unless essential.

[e]CCBs should be discontinued in patients with systolic HF unless absolutely necessary, and diltiazem and verapamil are potentially harmful in patients with systolic heart failure because of their negative inotropic action.