Diagnosis of thrombosis and pulmonary embolism

Henri Bounamaux, MD

Director, Division of Angiology and Hemostasis
University Hospitals of Geneva

Professor of Medicine and Dean
Faculty of Medicine, University of Geneva
Geneva, Switzerland

Cardiology Update
Davos, 10 February 2015
Disclosures for Henri Bounameaux, MD

<table>
<thead>
<tr>
<th>Research Support/P.I.</th>
<th>Thrombosis Research Institute, Bayer Pharma, Swiss National Research Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Consultant</td>
<td>Janssen, Bayer Pharma (Study committees)</td>
</tr>
<tr>
<td>Major Stockholder</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Speakers Bureau</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Honoraria</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Scientific Advisory Board</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
</tbody>
</table>

Presentation includes discussion of the following off-label use of a drug or medical device: <N/A>
My talk today

• What is the 2015 diagnostic algorithm in suspected VTE?
• Are there graded recommendations on VTE diagnosis?
• Are there pitfalls and controversies?
• Is more less?

Bates SM et al. *Chest* 2012;141(2 Suppl.):e351S–e418S.
In the 70’s-80’s

- Invasive
- Costly
- Not devoid of risks

Phlebography

Pulmonary angiography
The Diagnostic Tools

- Pulmonary angiography
- Phlebography
- Ventilation/Perfusion lung scan
- Echocardiography: reserved for hemodynamically unstable patients (not focus of the present talk)
- D-dimer
- Venous compression ultrasonography
- Clinical probability
- Single-row CTPA
- Multi-row CTPA
- MRI?
The 2014 diagnostic algorithm for suspected non high-risk VTE

1CUS (lower limb venous compression ultrasonography) in case of suspected DVT

2CTPA (multi-row) in case of suspected PE

3In case of negative CUS or MSCT and high prior clinical probability, consider additional imaging, e.g. venography (suspected DVT) or lung ventilation/perfusion scintigraphy or pulmonary angiography (suspected PE)

Rx stays for treatment

Clinical classification of PE

- **Massive (high-risk) PE** 5%
- **Non-massive (non-high risk) PE**
 - with RV dysfunction 30%
 (« submassive »)
 - without RV dysfunction 65%
 (« truly non massive »)
Suspected massive PE

- Massive PE
 - Schock or cardiorespiratory arrest
 - Timing: minutes …
 - Treatment: thrombolysis/embolectomy

- Diagnostic work-up less important than emergency treatment
 - Echocardiography useful (differential diagnosis, indirect arguments in direction of PE)
 - V/Q scan, CTPA for confirmation
 - No place for D-dimer or lengthy diagnostic sequences
The Diagnostic Tools

- Pulmonary angiography
- Phlebography
- Ventilation/Perfusion lung scan
- Echocardiography: reserved for hemodynamically unstable patients (not focus of the present talk)

- D-dimer
- Venous compression ultrasonography
- Clinical probability
- Single-row CTPA
- Multi-row CTPA
- MRI?
D-dimer for PE: what evidence?

ER: Dr. Green says:
« Electrolytes, CBC, blood gases and D-dimer! »

Seen on TV
Which level of evidence??
D-dimer in Suspected DVT

<table>
<thead>
<tr>
<th>Type of D-dimer</th>
<th>Deep vein thrombosis</th>
<th>Pulmonary embolism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sn, %</td>
<td>Sp, %</td>
</tr>
<tr>
<td>(number of studies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microplate ELISA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asserachrome (24)</td>
<td>94 (83-98)</td>
<td>47 (29-65)</td>
</tr>
<tr>
<td>Membrane ELISA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instantia (13)</td>
<td>86 (59-96)</td>
<td>65 (43-81)</td>
</tr>
<tr>
<td>Nycocard (23)</td>
<td>88 (68-96)</td>
<td>50 (31-68)</td>
</tr>
<tr>
<td>Latex quantitative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinaquant (12)</td>
<td>92 (75-98)</td>
<td>53 (32-73)</td>
</tr>
<tr>
<td>STA- lia test (25)</td>
<td>94 (83-98)</td>
<td>46 (28-64)</td>
</tr>
<tr>
<td>ELFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIDAS (40)</td>
<td>96 (93-98)</td>
<td>44 (36-52)</td>
</tr>
<tr>
<td>Whole-blood assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimpliRed (40)</td>
<td>82 (59-93)</td>
<td>72 (56-84)</td>
</tr>
</tbody>
</table>

D-dimer in Suspected PE

<table>
<thead>
<tr>
<th>Type of D-dimer</th>
<th>Deep vein thrombosis</th>
<th>Pulmonary embolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>(number of studies)</td>
<td>Sn, %</td>
<td>Sp, %</td>
</tr>
<tr>
<td>Microplate ELISA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asserachrome (24)</td>
<td>94 (83-98)</td>
<td>47 (29-65)</td>
</tr>
<tr>
<td>Membrane ELISA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instantia (13)</td>
<td>86 (59-96)</td>
<td>65 (43-81)</td>
</tr>
<tr>
<td>Nycocard (23)</td>
<td>88 (68-99)</td>
<td>62 (33-84)</td>
</tr>
<tr>
<td>Latex quantitative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinaquant (12)</td>
<td>92 (75-99)</td>
<td>94 (71-99)</td>
</tr>
<tr>
<td>STA- lia test (25)</td>
<td>94 (83-99)</td>
<td>96 (80-99)</td>
</tr>
<tr>
<td>ELFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIDAS (40)</td>
<td>96 (93-99)</td>
<td>97 (91-99)</td>
</tr>
<tr>
<td>Whole-blood assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SimpliRed (40)</td>
<td>82 (59-93)</td>
<td>86 (43-97)</td>
</tr>
</tbody>
</table>

RIETE data (N>17,000) | 90.6 (87.0-94.1) | 97.3 (96.7-97.8) | 97.6 (97.0-98.2) |

Receiver Operating Characteristic (ROC) Curve to Define the Diagnostic Cut-off in Suspected PE

Controversy: DD and Age (Individuals Suspected of PE*)

<table>
<thead>
<tr>
<th>Age</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>DD <500, % pts.</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td><40</td>
<td>100 (86-100)</td>
<td>67 (60-74)</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>40-49</td>
<td>100 (86-100)</td>
<td>67 (59-75)</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>50-59</td>
<td>100 (83-100)</td>
<td>56 (47-65)</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>60-69</td>
<td>99 (93-100)</td>
<td>40 (3-49)</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>70-79</td>
<td>99 (93-100)</td>
<td>26 (19-34)</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>80+</td>
<td>100 (98-100)</td>
<td>9 (44-51)</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

*n=1034 patients

Excluded patients: 1,074
- Age <18 years: 7
- Ongoing anticoagulant therapy: 122
- Life expectancy < 3 months: 8
- Pregnancy: 15
- Diagnostic testing performed before inclusion: 134
- Discharged from ER before inclusion: 113
- Contra-indication to CT
 - Allergy to contrast: 49
 - Renal failure: 88
- Unavailable for follow-ups: 25
- Inability to give informed consent: 301
- Refusal to participate: 187
- Other reasons: 65
- Consent withdrawal: 1
- Protocol violation (D-Dimer not performed): 21

Cut-off (above age of 50) = Age x 10

Number Needed to Test (NNT) to rule out one event

<table>
<thead>
<tr>
<th>Conventional</th>
<th>Age-adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3.4</td>
</tr>
</tbody>
</table>

in patients aged 75+

Among the 766 patients 75 years or older, of whom 673 had a non-high clinical probability, using the age-adjusted cutoff instead of the 500 μg/L cutoff increased the proportion of patients in whom PE could be excluded on the basis of D-dimer from 43 of 673 patients (6.4% [95% CI, 4.8%-8.5%]) to 200 of 673 patients (29.7% [95% CI, 26.4%-33.3%]), without any additional false-negative findings.
The Diagnostic Tools

- Pulmonary angiography
- Phlebography
- Ventilation/Perfusion lung scan
- Echocardiography: reserved for hemodynamically unstable patients (not focus of the present talk)
- D-dimer
 - Venous compression ultrasonography
- Clinical probability
- Single-row CTPA
- Multi-row CTPA
- MRI?
Compression ultrasonography (CUS)

Controversy: Proximal or complete CUS?

1. Proximal CUS only*
2. Complete (proximal and distal) CUS

* Often in combination or not with repeat exam (after 7 days) (so-called serial CUS), ideally in combination with other tests (DD, clinical probability) in order to increase the yield and cost-effectiveness

• In patients with a **low pretest clinical probability**, we recommend initial testing with D-dimer or **ultrasound (US)** of the proximal veins over no testing (1B), venography (1B) or whole-leg US (2B).

• In patients with **moderate pretest clinical probability**, we recommend initial testing with a highly sensitive D-dimer test, **proximal or whole-leg US** rather than no testing (1B) or venography (1B).

• In patients with a **high pretest clinical probability**, we recommend **proximal or whole-leg US** over no testing (1B) or venography (1B).
• Using whole-leg CUS rather than just proximal CUS is associated with a substantial increase of patients who require anticoagulant treatment.

• With no obvious benefit in 3-month outcome.

• With an increased risk of adverse bleeding events.
Controversy: why using these algorithms?

<table>
<thead>
<tr>
<th>Diagnostic Work-up</th>
<th>Patients Receiving Appropriate Management (n = 418)</th>
<th>Patients Receiving Inappropriate Management (n = 506)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total thromboembolic events, n (%)</td>
<td>5 (1.2)</td>
<td>39 (7.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Nonfatal thromboembolic event, n</td>
<td>2</td>
<td>10</td>
<td>0.045</td>
</tr>
<tr>
<td>Unexplained sudden death, n</td>
<td>3</td>
<td>29</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The Diagnostic Tools

- Pulmonary angiography
- Phlebography
- Ventilation/Perfusion lung scan
- Echocardiography: reserved for hemodynamically unstable patients (not focus of the present talk)
- D-dimer
- Venous compression ultrasonography
- **Clinical probability (implicit or explicit)**
- Single-row CTPA
- Multi-row helical CTPA
- MRI ?
PIOPED II: Results in relation to clinical probability assessment (explicit, after Wells)

<table>
<thead>
<tr>
<th>Clinical probability</th>
<th>CT positive</th>
<th>CT negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>22/38 (58%)</td>
<td>8/164 (4%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>93/101 (92%)</td>
<td>15/136 (11%)</td>
</tr>
<tr>
<td>High</td>
<td>22/23 (96%)</td>
<td>6/15 (40%)</td>
</tr>
</tbody>
</table>

23% of positive CTs

2% of negative CTs

as compared with a composite reference standard.
Revised Geneva CPR for suspected PE

- Age > 65 years + 1
- Previous DVT/PE + 3
- Surgery/fracture (4 w) + 2
- Active cancer + 2
- Pulse rate
 - 75–94 /min + 3
 - ≥ 95 /min + 5
- Pain by palpation of leg and edema + 4

- Symptoms
 - Unilateral leg pain + 3
 - Haemoptysis + 2

- Maximum score + 25

<table>
<thead>
<tr>
<th>Probability of PE</th>
<th>Score</th>
<th>Prevalence of PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0–3</td>
<td>8%</td>
</tr>
<tr>
<td>Intermediate</td>
<td>4–10</td>
<td>29%</td>
</tr>
<tr>
<td>High</td>
<td>≥ 11</td>
<td>74%</td>
</tr>
</tbody>
</table>

ACCP guidelines: 9th edition

To treat or not to treat while awaiting test results

- In patients with a **high clinical suspicion** of DVT/PE, we suggest treatment with parenteral anticoagulants over no treatment (2C).
- In patients with an **intermediate clinical suspicion** of DVT/PE, we suggest treatment with parenteral anticoagulants over no treatment if the results of the diagnostic tests are expected to be delayed for more than 4 hours (2C).
- In patients with a **low clinical suspicion** of DVT/PE, we suggest not treating with parenteral anticoagulants while awaiting the results of diagnostic tests, provided test results are expected within 24 hours (2C).

Kearon C et al. *Chest* 2012;141(2 Suppl.):e419S–e494S.
Multi-row Detector CTPA in Suspected PE: Outcome Studies

Aim: To assess safety of a negative mrCT for ruling out PE

- Without lower limb venous ultrasonography
- In patients with a non-high clinical probability (Geneva score) or a dichotomized Wells’ score below 4 points (« unlikely »)

3-month venous thromboembolic risk in patients not given anticoagulant therapy based on a negative mrCT AND a negative CUS:

<table>
<thead>
<tr>
<th>Swiss-Belgian-French Consortium</th>
<th>1.7% (0.7 to 3.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRISTOPHER Study</td>
<td>1.3% (0.7 to 2.2)</td>
</tr>
</tbody>
</table>

Both studies suggest that mrCTpPA may safely rule out PE without lower limb venous compression ultrasonography, which was subsequently confirmed in a RCT*

CHRISTOPHER Study Investigators. *JAMA* 2006;295:172–9
Controversy: Do we overdiagnose PE?

Figure 1. Expected change in mortality and case fatality in various scenarios of rising apparent incidence. PE indicates pulmonary embolism.
Pitfall: Evidence for increased risk of anticoagulation treatment

Figure 3. Rates of potential complications of anticoagulation treatment among US adults hospitalized with a pulmonary embolism, 1993-2006. APC indicates annual percentage change; and CTPA, computed tomographic pulmonary angiography.

Is more less? (II)

- Using CTPA as diagnostic test for suspected PE is associated with a **substantial increase** in patients who require anticoagulant treatment.

- With **no change** in disease mortality.

- With an **increased incidence of bleeding** events.

- With increased **radiation**.
The true question

Is not which patients do have a clot?

but

Which patients with VTE do need anticoagulant treatment?

- Patients with subsegmental PE (NCT01455818)
- Patients with isolated distal DVT (NCT00421538)

Of note, these studies have recruitment and funding problems. These issues should encourage a move towards a model where funds are pooled into a central and impartial agency that decides what trials to administer.

Take home messages

• Diagnosis of DVT and PE has changed considerably over the past two decades (it has become non-invasive, sequential, and easy)

• It includes initial clinical assessment, D-dimer measurement (except for high-probability patients) and CUS (suspected DVT) or CTPA (suspected PE)

• Recent “advances” (whole-leg CUS instead of proximal CUS for suspected DVT, new generations of scanners with increased sensitivity to minor, potentially clinically non-relevant PE) may lead to overdiagnosis and hence overtreatment with its inherent risks
Thank you for your attention