Boston Scientific: Designing the pressure guidewire for contemporary PCI scenarios

Javier Escaned MD PhD FESC
Hospital Clinico San Carlos. Madrid.
Potential conflicts of interest

Speaker's name: Javier Escaned

☑ I have the following potential conflicts of interest regarding the topics of this presentation:

Speaker at educational events and consultancies:
Boston Scientific, St Jude Medical, Volcano Corporation
20 years of fractional flow reserve

- 1995: DEFER
 - Easy intermediate stenoses

- 2005: ESC guidelines
 - Multivessel disease

- 2015: RIPCORD
 - All stentable size vessels
 - SYNTAX II
 - FAME
 - ACS FFR studies
 - Triple vessel (CABG equivalent)

FAME
FAME III
ACS FFR studies

DEFER
ESC guidelines
RIPCORD
SYNTAX II
FAME III
ACS FFR studies
20 years of fractional flow reserve

- 1995: Easy intermediate stenoses
- 2005: Multivessel disease
- 2015: All stentable size vessels

Pressure guidewire challenge

DEFER
ESC guidelines
FAME
RIPCORD
SYNTAX II
FAME III
ACS FFR studies

Triple vessel (CABG equivalent)
Intracoronary pressure measurements in complex PCI scenarios

PAST
- Interrogation of single, intermediate severity stenosis.
- Stable patients.
- Pressure wire rarely used as PCI wire in complex cases.
- FFR and imaging (IVUS) considered as alternative tools.

PRESENT
- Interrogation of all potential PCI targets irrespective of stenosis severity.
- Stable and ACS patients.
- Use of pressure wire as a PCI workhorse wire.
- FFR and imaging envisaged as synergic tools in diagnosis and treatment.
Intracoronary pressure measurements in complex PCI scenarios

- Tortuous vessels
- Jailed branches
- Vessel calcification
- Multivessel disease
- ...
Traditional PCI wire structure

Tip
- Shapeability
- Steerability
- Torque

Wire core
- Stability
- Integrity
- Torque
- Rail support

Key performance features
- Smooth transition from distal to proximal ends
- Torque transmitted via wire core
- Rail support via wire core
Traditional FFR wire structure

Tip
- Separated from wire body by the sensor

Sensor Housing
- Piezoelectric sensor
- Solid rigid housing
- Abrupt transitions proximal and distal to the sensor

Hollow Wire
* Hollow wire body for sensor connection

Performance drawbacks
- Abrupt transitions around solid rigid housing
- Poor torque due to hollow wire body
- Drift sensitive piezoelectric sensor
Comet FFR Guidewire

Synergy’s Laser-cut High Torque Sleeve
✓ Improved deliverability and performance

Optical Pressure Sensor
✓ Accurate measurements
✓ Less pressure drift

Asahi Tip and Coatings
✓ Better tip transition with performance coatings

Free Spin handle, Wireless connection
✓ Easy lab integration
✓ Unrestricted performance
Asahi Tip with ACTONE / Dual-Coil Technology

Key tip benefits

- Precise torque response
- Optimal tip flexibility and transition
- Durable tip-shape retention
Comet torqueability performance
Optical pressure sensor

- Less drift, better accuracy than piezoelectric technology
- Robust connection (less blood connection issues)
Intracoronary pressure measurements in complex PCI scenarios

PAST

- Interrogation of single, intermediate severity stenosis.
- Stable patients.
- Pressure wire rarely used as PCI wire in complex cases
- FFR and imaging (IVUS) considered as alternative tools.

PRESENT

- Interrogation of all potential PCI targets irrespective of stenosis severity.
- Stable and ACS patients.
- Use of pressure wire as a PCI workhorse wire.
- FFR and imaging envisaged as synergic tools in diagnosis and treatment.
iLab POLARIS Multi-Modality System

- Intuitive software that decreases procedure time
- Hardware that simplifies the procedure
- Complete family of IVUS catheters on multi-modality FFR system
- FFR wire on multi-modality IVUS system
Thank you for your attention