FIBER-OPTIC 0.014” PRESSURE-WIRE: USE AFTER BALLOON ANGIOPLASTY AND STENT IMPLANTATION

Olivier F. Bertrand, MD, PhD

Associate-Professor of Medicine, Laval University
Adjunct-Professor, Department of Mechanical Engineering, McGill University
Quebec Heart-Lung Institute

Coronary Physiology in the Catheterization Laboratory (9th Edition)- April 23-25, 2015
DISCLOSURES

• Consultant, Opsens

• Scientific Director of International Chair in Interventional Cardiology and Transradial Approach
 - operates www.theradialist.org &
 - organizes AIM-RADIAL congress (www.aimradial.org)

• Chair receives funding from multiple industry and other sources

• O₂ FIM study management and data analysis
CASE STORY

- 83 year old man
- RF: glucose intolerance, hypertension
- crescendo angina
- Exercice test +/- 5 minutes
CAUDAL RAO VIEW
FFR IN CX ARTERY

NOT FOR MEDICAL USAGE
FFR IN CX ARTERY

Pd/Pa = 0.94
FFR = 0.90
FFR IN LAD ARTERY
FFR IN LAD ARTERY

Pd/Pa = 0.68
FFR = 0.47
BALLOON 2.0MM

NOT FOR MEDICAL USAGE
POST-BALLOON 1
POST-BALLOON 1

Pd/Pa = 0.88
FFR = 0.72
BALLOON 3.0 MM

NOT FOR MEDICAL USAGE
BALLOON 3.0 MM

\[Pd/Pa = 0.92 \]
\[FFR = 0.82 \]
POST-STENT 2

Pd/Pa = 0.92
FFR = 0.84
FFR POST-PCI

G Rimac et al. 2015 (submitted)
FFR POST-PCI AND MACE

G Rimac et al. 2015 (submitted)
CONCLUSION

• FFR post-stent generally higher than post-balloon in accordance with lower residual pressure gradient

• Atherosclerosis is a diffuse process, hence perfect (1.0) result unlikely

• Is there a relationship between immediate post-PCI and clinical outcomes?

• Is there a threshold value?