# Left ventricular twist in physiology and disease

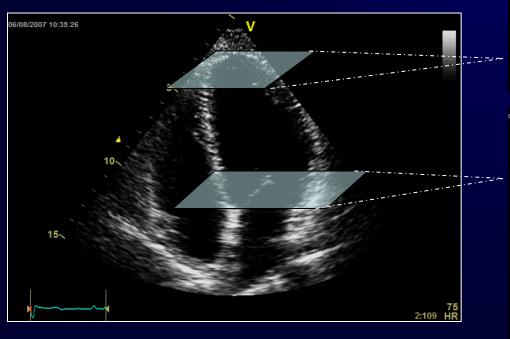
### Bogdan A. Popescu

'Carol Davila' University of Medicine and Pharmacy Bucharest, Romania

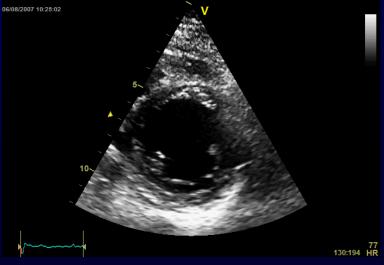
**EAE Teaching Course, Sofia, Apr 2012** 



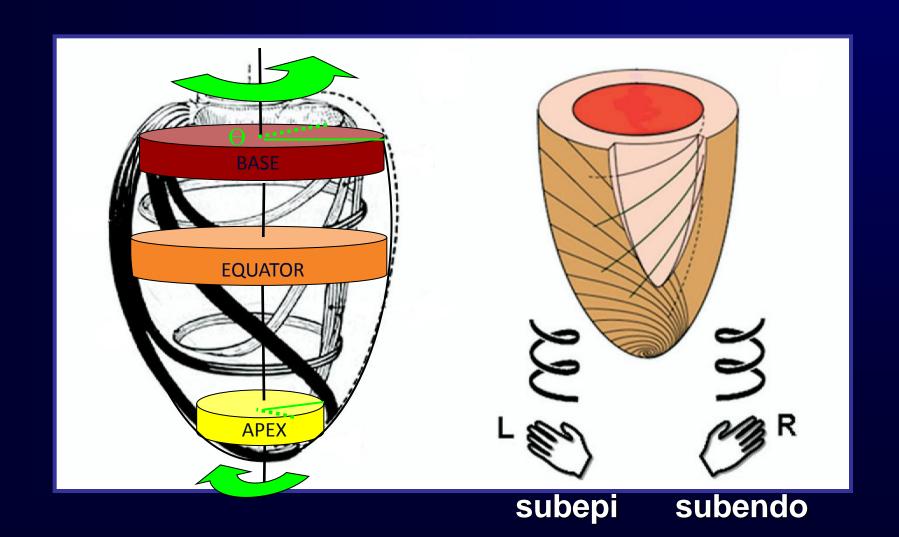




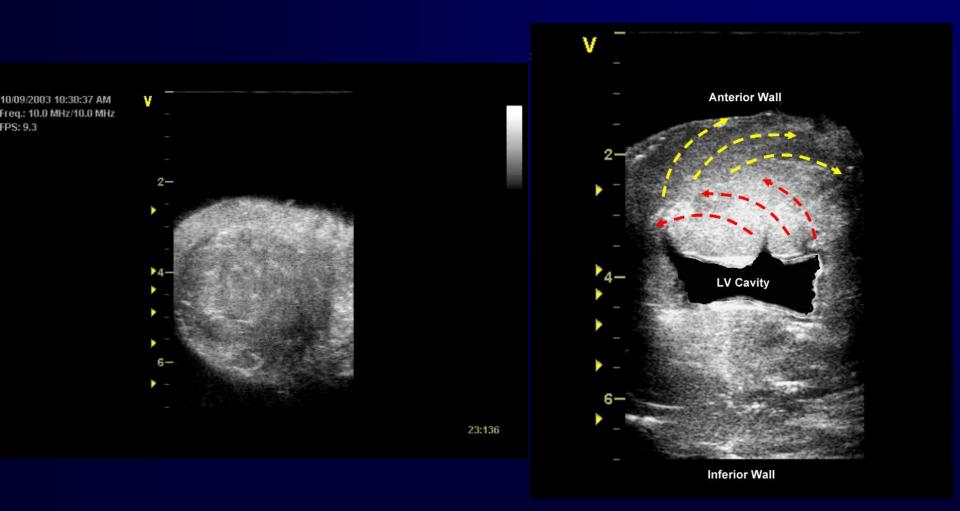

### **Agenda**


- Anatomical background
- Physiological implications
- Validation and technical issues
- Pathological implications

### LV: complex motion pattern

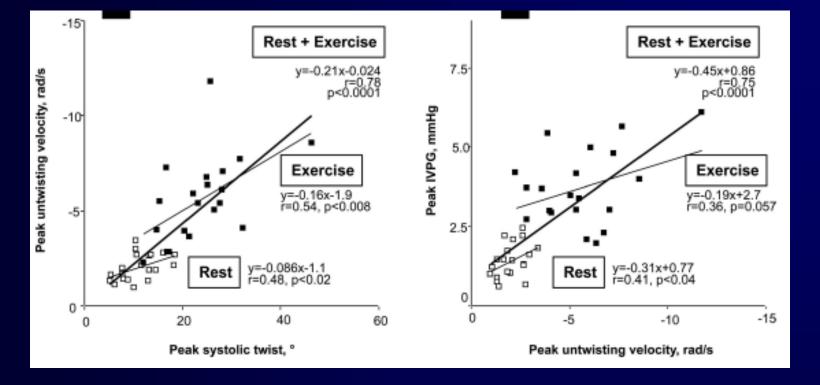

- Shortening
- Thickening
- Translation
- Rotation





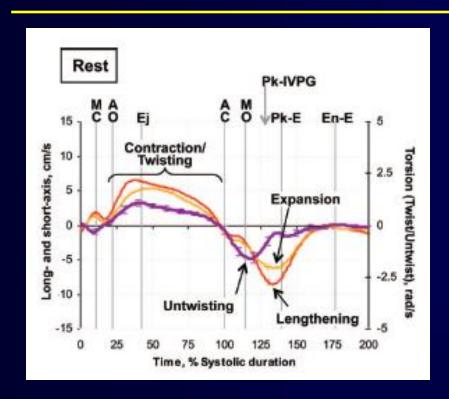


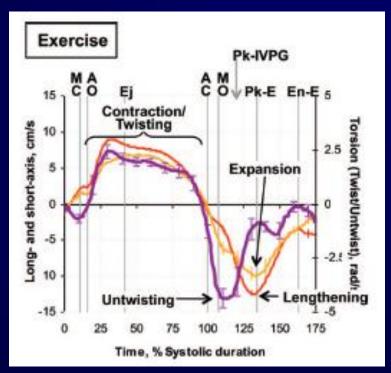

### Left ventricular torsion




### Myocardial fiber arrangement



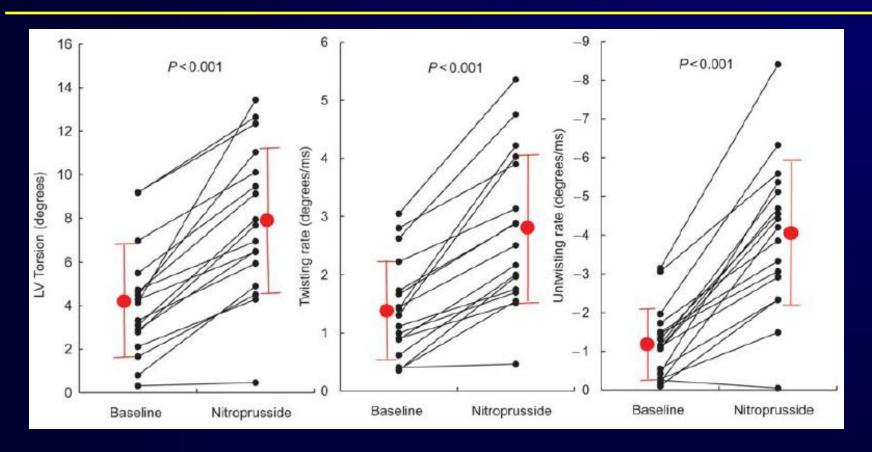

### Importance of cardiac torsion


- Torsion helps bring a uniform distribution of LV fiber stress and fiber shortening across the wall, increasing the efficiency of LV contraction - role in ejection
- Fiber twisting and shearing deform the matrix and result in storage of potential energy, which is subsequently utilized for diastolic recoil role in filling



- LV untwisting appears to be linked temporally with early diastolic base-to-apex pressure gradients, enhanced by exercise, which may assist efficient LV filling
- Thus, LV torsion and subsequent rapid untwisting appear to be manifestations of elastic recoil, critically linking systolic contraction to diastolic filling

### LV twist/untwist in normals





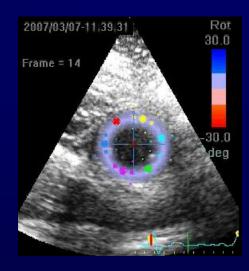

LV untwisting precedes both long-axis lengthening and short-axis expansion.

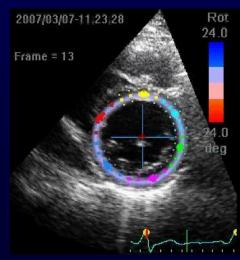
During exercise, the LV untwisting velocity was markedly enhanced, keeping the temporal sequence in early diastole.

### LV torsion – load dependence

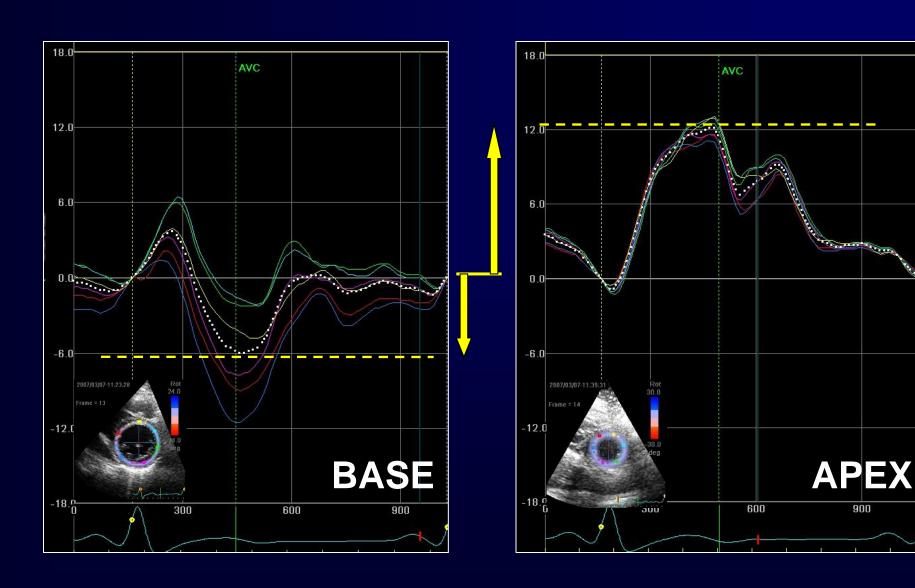


 LV torsion, TRs, and UTRs are all enhanced in the setting of drug-induced vasodilation, indicating substantial load dependence.

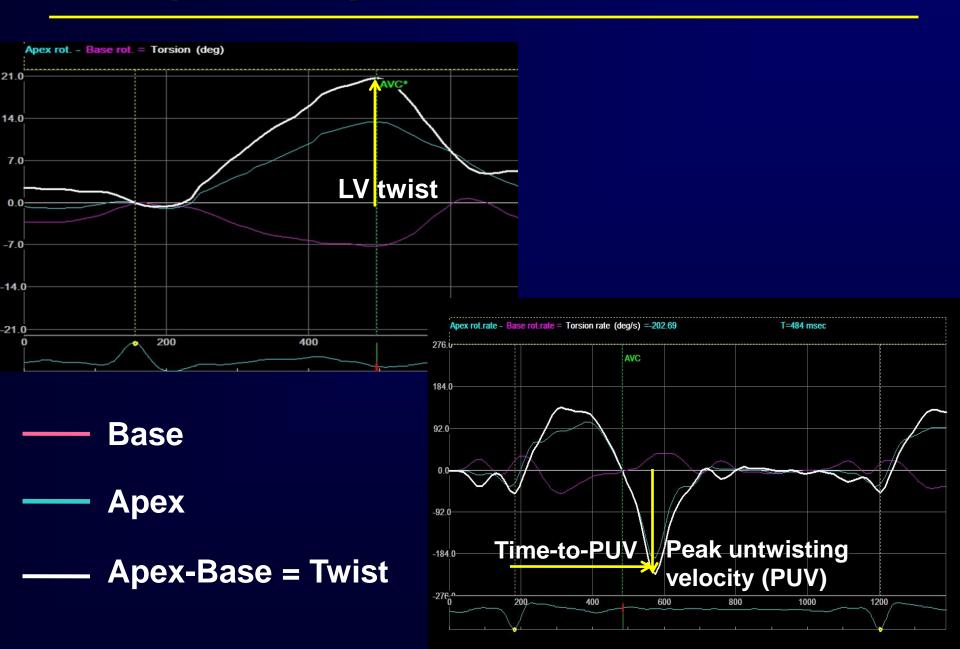

### How can LV rotation be assessed?


- Sonomicrometry
  - invasive, epicardial radio-opaque markers
- Tagging MRI
  - limited availability
- Tissue Doppler
  - angle-dependency
- Speckle tracking

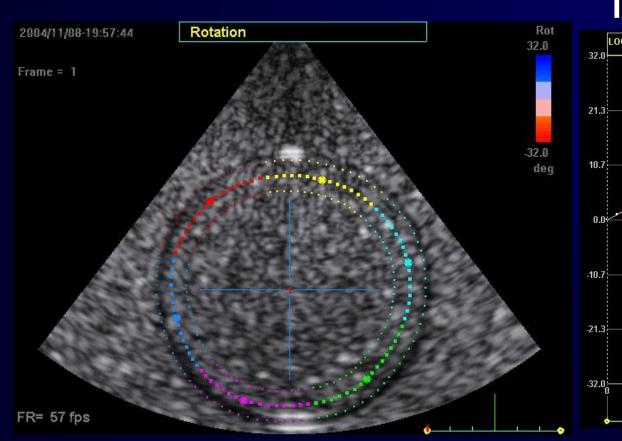
### Left ventricular torsion


- = rotation (rot) of the apex relative to the base
- Apex: counterclockwise (+)
- Base: clockwise (-)

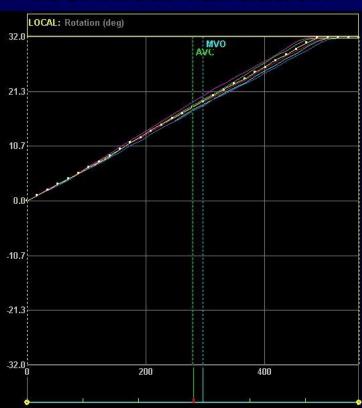
Twist (°) = apical rot – basal rot





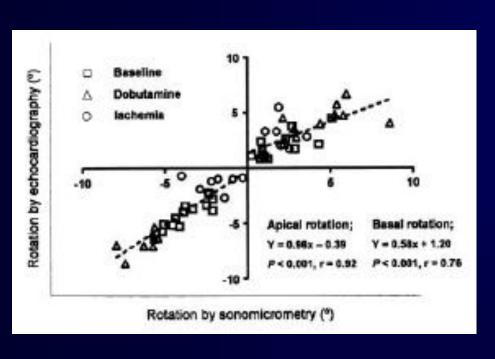


## Rotation vs time plots

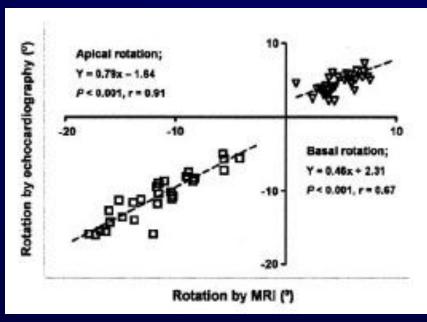



### Temporal sequence of LV twist / untwist



## Speckle Imaging Rotation Validation vs Rotating Phantom





#### **Technical validation**



### LV rotation by STE: validation

#### **Clinical validation**

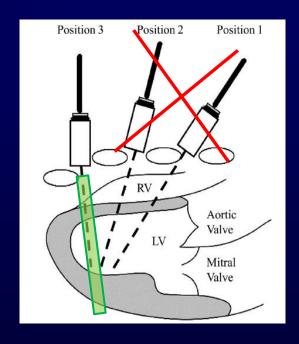




Experimental data (13 dogs)

Clinical data (29 normal subjects)

### STE vs MR: Impact of missing the true apex


- 43 pts with various pathologies, 56±14 years (22–84)
- 2D-STE vs tagging MR

Apical rotation measured by 2D-STE significantly underestimated that measured by tagging MR

Underestimation of apical rotation by 2D-STE is probably not related to intrinsic inaccuracies of this technique, but rather to its inability to image the true LV apex (achieved in only 10% pts in this study!)

### LV torsion and its correlates in normals

| N = 100      |                     |
|--------------|---------------------|
| Age (years)  | r = 0.4, p < 0.0001 |
| LVESD (mm)   | r = -0.3, p = 0.004 |
| EF (%)       | r = 0.3, p = 0.002  |
| LAVi (ml/m²) | r = 0.3, p = 0.003  |
| Vp (cm/s)    | r = 0.3, p = 0.003  |
| E/Vp         | r = -0.4, p = 0.003 |



Van Dalen BM, et al. JASE 2008

Popescu BA et al.

### LV torsion by STE: clinical studies

## Although conceptually simple, torsion is more complex in practice

| Table 1 Reported Values for Torsion in Normals of Similar Age |                  |              |            |                        |
|---------------------------------------------------------------|------------------|--------------|------------|------------------------|
| Author                                                        | Method           | Subjects (n) | Age (yrs)  | Torsion                |
| Takeuchi et al. (9)                                           | Speckle tracking | 57           | 29 ± 6     | 6.7 ± 2.9°             |
| Notomi et al. (8)                                             | DTI              | 10           | 28 ± 3     | 8.7 ± 2.7°             |
| Neilan et al. (10)                                            | Speckle tracking | 17           | $37 \pm 9$ | $10 \pm 4^{\circ}$     |
| Notomi et al. (3)                                             | DTI              | 20           | 34 ± 7     | <b>11</b> ± <b>4</b> ° |
| Halle-Valle et al. (11)                                       | Speckle tracking | 29           | 33 ± 6     | 14.5 ± 3.2°            |
|                                                               |                  |              |            |                        |

DTI = Doppler tissue imaging.

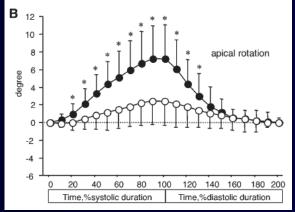
## Wide variability in the reported values for resting systolic torsion

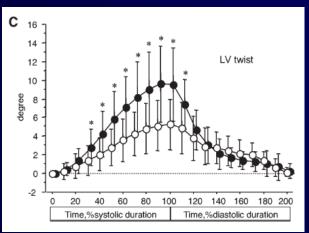
### Physiological variables affecting LV twist/untwist

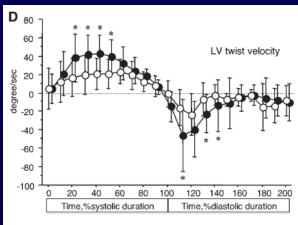
| Table 1. Physiological Variables Influencing Left Ventricular<br>Twist Mechanics                                                                                |       |             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|--|--|
| Physiological Variables                                                                                                                                         | Twist | E,          |  |  |
| Increasing preload (35–37)                                                                                                                                      | 1     | ↓ l         |  |  |
| Increasing afterload (35–37)                                                                                                                                    | 1     | ↓*          |  |  |
| Increasing contractility (9,36,38,39)                                                                                                                           | 1     | 1           |  |  |
| Exercise (40)                                                                                                                                                   | 1     | 1           |  |  |
| Increasing age (33,34)                                                                                                                                          | 1     | ↓*          |  |  |
| Numbers in parentheses correspond to the references list. *Delayed onset of untwisting. $\downarrow$ = reduced; $\uparrow$ = increased; $E_r$ = early diagrams. |       | 080.000.000 |  |  |

### **Exercise**

- Short-term exercise can almost double LV twisting and untwisting (by augmented rotation that stores additional potential energy released for improving diastolic suction)
- Long-term exercise training may reduce the values of resting LV twist (and increased torsional reserves are being used in high-demand situations)
- With advancing age, the higher resting torsion is associated with attenuation of torsional reserve at peak exercise


Neilan TG et al. *J Am Soc Echocardiogr*Notomi Y et al. *Circulation*Notomi Y et al. *Am J Physiol Heart Circ Physiol*Zocalo Y et al. *Conf Proc IEEE Eng Med Biol Soc*Burns AT et al. *J Am Soc Echocardiogr*


### **Apical rotation and LV function**


- Both LV twist and apical rotation are more closely related to LV dP/dt<sub>max</sub> than LV EF after ligation of either LAD or LCx artery
- Apical rotation by STE correlated well with LV twist over a wide range of loading conditions and inotropic states, and during myocardial ischemia
- Apical rotation measurement by STE is an effective noninvasive index of global LV contractility

### **Anterior myocardial infarction**

30 pts with old anterior MI (>1 mo): 2 groups (LVEF ≥ 45%; < 45%)







LV apex is the main determinant of LV torsion and untwisting both in normal and diseased hearts

### **Exercise echo in HFNEF**

In HFNEF - widespread abnormalities of both LV systolic and diastolic function that become more apparent on exercise:

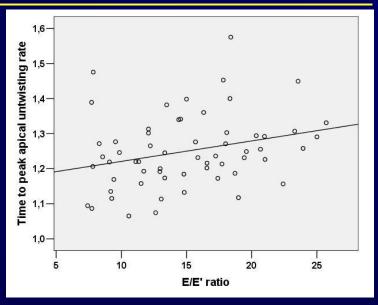
- At rest lower values of Longitudinal and radial strain
  - Apical rotation

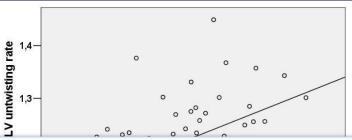
Correlated with peak VO<sub>2max</sub>

- Reduced and delayed untwisting
- Mitral annular velocities
- At exercise, all parameters failed to normalize

HFNEF is not an isolated disorder of diastole

### **Aortic stenosis**


|                                         | Controls  | AS        | p value |
|-----------------------------------------|-----------|-----------|---------|
|                                         | (n=40)    | (n=61)    |         |
| Peak apical rotation (°)                | 15.7±5.9  | 21.0±7.6  | <0.001  |
| Peak basal rotation (°)                 | -6.2±2.9  | -6.7±3.2  | 0.4     |
| Twist (°)                               | 20.8±6.8  | 26.5±9.1  | 0.001   |
| LV twist rate (°/s)                     | 118±35    | 137±55    | 0.006   |
| Peak systolic torsion (°/cm)            | 2.7±0.9   | 3.4±1.3   | 0.002   |
| LV peak untwisting rate (°/s)           | -143±48   | -158±59   | 0.18    |
| Time to peak untwisting rate            | 1.23±0.09 | 1.21±0.08 | 0.2     |
| LV peak apical back rotation rate (°/s) | -93±47    | -115±55   | 0.04    |
| Time to peak apical back rotation rate  | 1.19±0.12 | 1.25±0.1  | 0.015   |
| LV peak basal back rotation rate (°/s)  | 64±20     | 70±23     | 0.18    |
| Time to peak basal back rotation rate   | 1.21±0.09 | 1.20±0.11 | 0.8     |


Popescu BA et al. Eur J Echocardiogr 2010

### **Aortic stenosis**

Time to peak LV untwisting rate and time to peak apical back rotation rate were significantly related to:

- E/E' ratio
- Indexed LA volume
- BNP levels (p<0.04 for all)



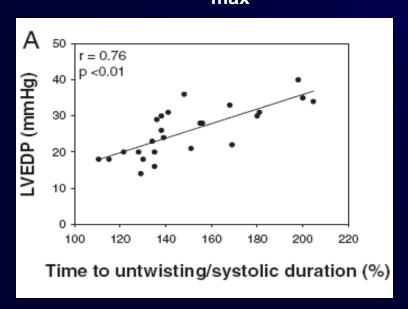


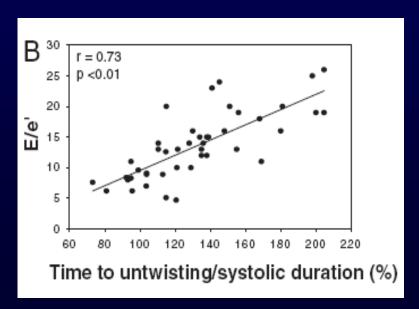
In patients with severe AS and preserved LVEF there is a significant relationship between delayed LV untwisting and increased filling pressures, suggesting a role for impaired LV untwisting in the pathophysiology of diastolic dysfunction in AS

### LV torsion by STE in mitral regurgitation

- 38 pts with mod-severe MR (MVP) vs 30 controls
- LV remodeling and MR degree correlated with:

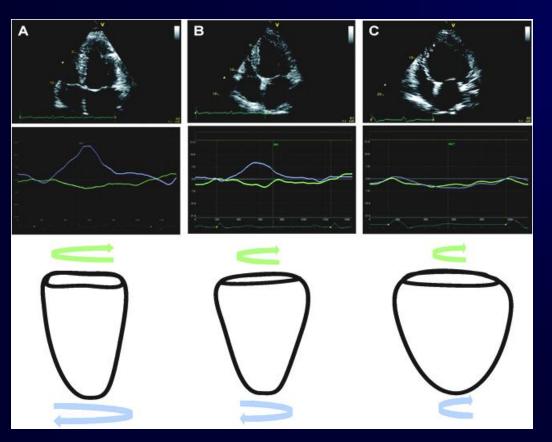



reduced LV torsion


reduced untwisting velocity

delayed onset of untwisting

### **Obstructive HCM (HOCM)**


- Twist and untwisting rate not different from controls
- Untwisting was delayed in HCM (in HOCM more than in HCM) and correlated with LVFP, reduced LV volumes and  $V02_{max}$
- Septal reduction improved the LV untwisting, increased LVEDV and V02<sub>max</sub>





### Dilated cardiomyopathy

 LV systolic rotation at both basal and apical levels and LV torsion are significantly reduced in pts, compared to controls (A)



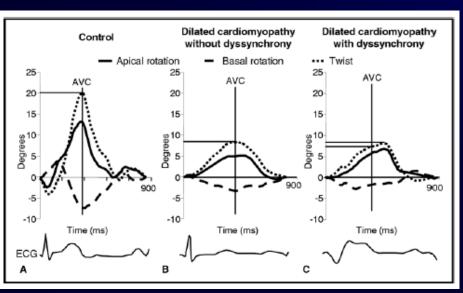
- 2 different patterns of apical rotation:
- normally directed
  - (B counterclockwise)
- reversed
  - (C clockwise)

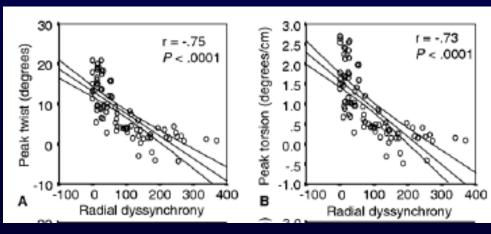
### **Dilated cardiomyopathy**

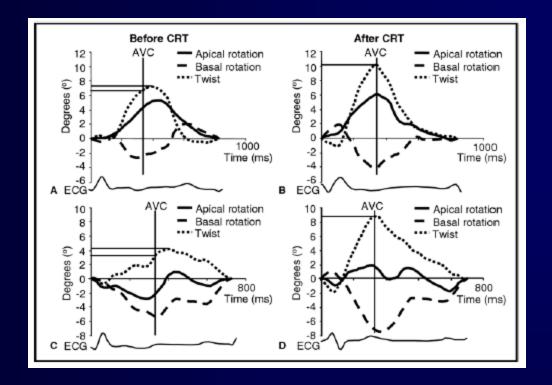
|                                   | DCM (+)<br>(n=24) | DCM (-)<br>(n=26) | p value |
|-----------------------------------|-------------------|-------------------|---------|
| Men, n (%)                        | 18 (75)           | 23 (88)           | 0.2     |
| Age (years)                       | 51 (13)           | 48 (13)           | 0.4     |
| QRS duration (ms)                 | 114 (33)          | 147 (38)          | 0.004   |
| Mitral regurgitation degree (0-3) | 1.3 (0.8)         | 1.8 (0.8)         | 0.03    |
| LVEDV (ml/m²)                     | 107 (44)          | 148 (66)          | 0.01    |
| LVESV (ml/m²)                     | 75 (40)           | 110 (51)          | 0.01    |
| LV sphericity index               | 1.64 (0.19)       | 1.51 (0.20)       | 0.02    |
| LV mass (g/m²)                    | 173 (48)          | 213 (72)          | 0.02    |
| LVFS (%)                          | 18 (6)            | 14 (5)            | 0.01    |
| LVEF (%)                          | 33 (12)           | 26 (7)            | 0.02    |
| Peak E' (cm/s)                    | 5.6 (1.9)         | 4.4 (1.7)         | 0.04    |
| E/E' ratio                        | 14 (6)            | 19 (10)           | 0.04    |

### Dilated cardiomyopathy

Reversed apical rotation and loss of LV torsion in pts with DCM is associated with:


- significant LV remodeling
- increased electrical dyssynchrony
- reduced systolic function
- increased filling pressures


Indicating a more advanced disease stage


### Effect of Mechanical Dyssynchrony and Cardiac Resynchronization Therapy on Left Ventricular Rotational Mechanics

Leyla Elif Sade, MD\*, Özlem Demir, MD, Ilyas Atar, MD, Haldun Müderrisoglu, MD, and Bülent Özin, MD

- 54 pts with HF; 33 underwent CRT
- 33 control subjects
- Radial & Long dyssynchrony by STE
- Apical & Basal rotation, twist & torsion by STE







- LV dyssynchrony is associated with discoordinate rotation of the apical and basal regions, which in turn significantly decreases peak LV twist and torsion.
- LV torsion and twist at AVC had the highest Sv (90%) and Sp (77%) to predict CRT responders among all other parameters, including radial and longitudinal dyssynchrony

Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications Endorsed by the Japanese Society of Echocardiography

#### 3.3. LV Rotation

**Summary and Recommended Indications:** Despite the growing evidence in support of clinical implications of LV twist measurements using 2D STE, routine clinical use of this methodology is not recommended at this time.

### Conclusions

- LV twist/untwist play an important role in LV function, in both ejection and filling
- Speckle tracking echocardiography allows the assessment of LV rotation, twist/untwist
- Standardization of acquisition and processing is essential for proper use of this technique
- Careful selection of the apical LV cut is mandatory, or else underestimation of apical rotation/twist may result
- The incremental role of these parameters in clinical decision-making needs further studies

THE EUROPEAN ASSOCIATION OF ECHOCARDIOGRAPHY (EAE) PRESENTS

Athens - Greece 5-8 December

# Euroecho & other imaging modalities

The 14" Annual Meeting of the European Association of Echecoellography, a Registered Branch of the ELC, in cooperation with the Working Group on Echecoellography of the Melleric Cardiological Facility

FIRST ANNOUNCEMENT





www.escardio.org/EAE