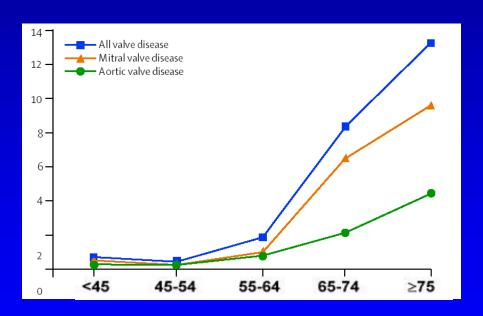

#### The Changing Face of VHD Burden



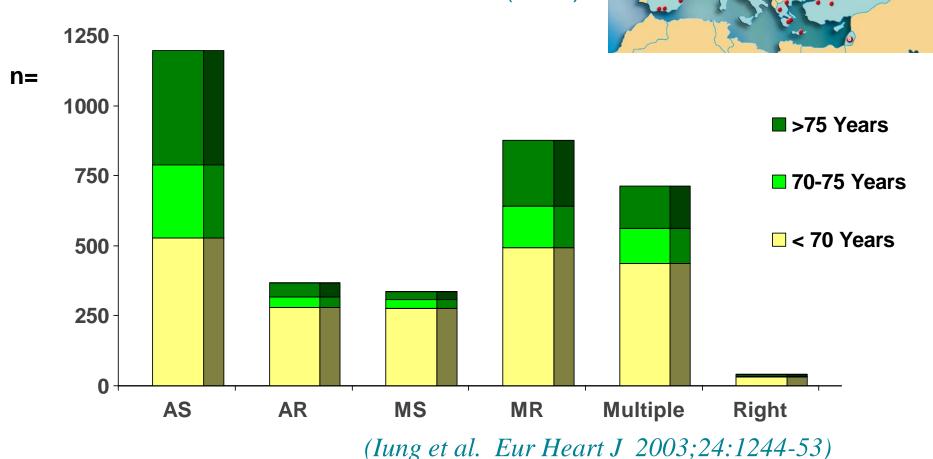

# Changing Pattern of Valvular Disease in Industrialised Countries



(Soler-Soler J, Galve E Heart 2000;83:721-5)

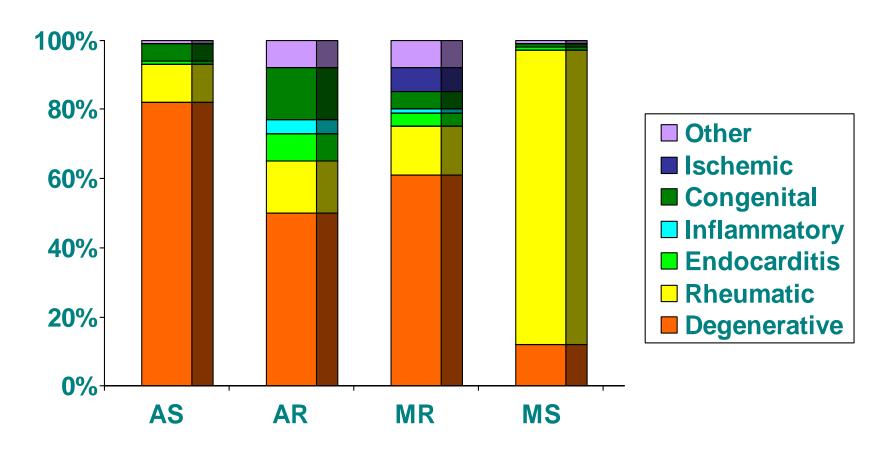
#### **Prevalence of Valvular Heart Disease**

- 11 911 randomly selected patients with echo
- Age-adjusted prevalence of valvular disease
   2.5% [95% Cl 2.2-2.7]




Prevalence 1.8% in a community-based study

(Nkomo et al. Lancet 2006;368:1005-11)


### Euro Heart Survey on Valvular Diseases

3547 Patients with Native Valve Disease (2001)



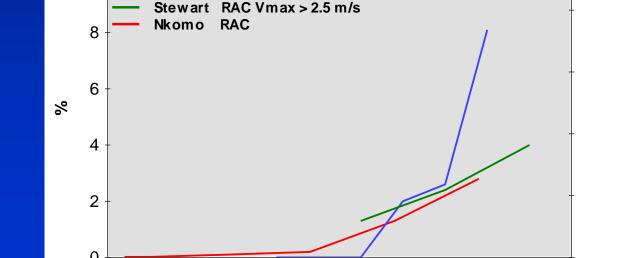


### **Single Native Valve Disease**Etiology





#### **Prevalence of Aortic Stenosis**


- 11 911 patients (Nkomo et al. Lancet 2006;368:1005-11)
- 5 201 patients ≥ 65 years

  (Stewart et al. J Am Coll Cardiol 1997;29:630-4)
- 577 patients ≥ 55 years
  (Lindroos et al. J Am Coll Cardiol 1993;21:1220-5)

10

<45

45-54

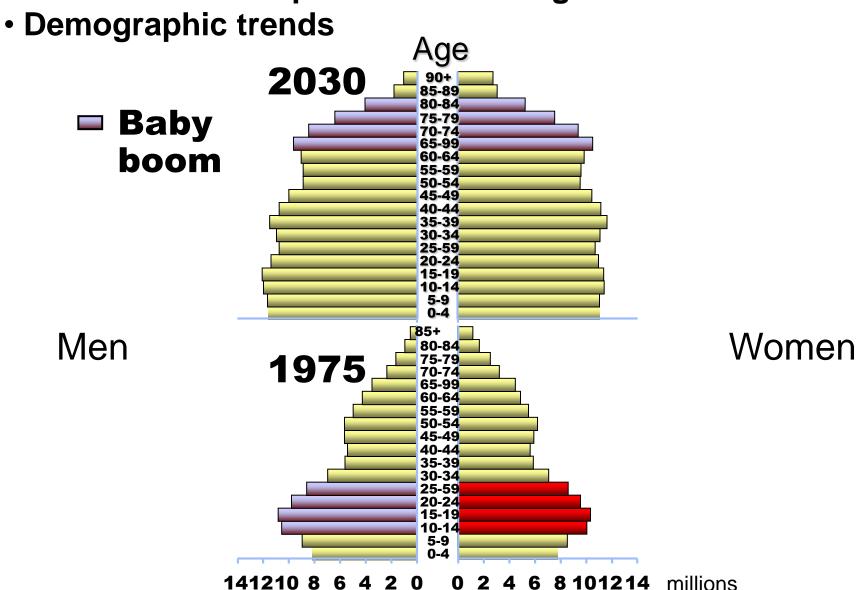


65-75

AGE (Ans)

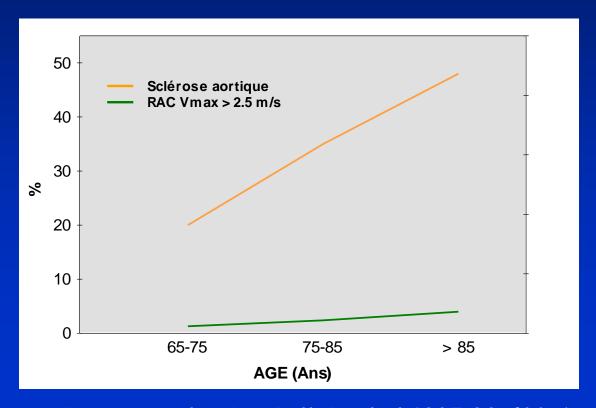
75-85

> 85


55-65

Lindroos RAC < 1,0 cm<sup>2</sup>

(Iung and Vahanian Nat Rev Cardiol 2011;8:162-72)


#### Prevalence of AS: Perspectives

Lack of validated prevention strategies



#### **Prevalence of Aortic Sclerosis**

- Thickening of aortic valve without obstruction (v. max < 2.5 m/sec.)</li>
- Prevalence in 5 201 patients ≥ 65 years : 26% (men 31%, women 22%)



(Stewart et al. J Am Coll Cardiol 1997;29:630-4)

#### **Progression of Aortic Sclerosis**

- 2131 patients with aortic sclerosis (valve thickening with v. max <2 m/sec.)</li>
- Progression toward AS in 15.9% of cases (mean FU 7 years) vs. 1% in patients with non-thickened aortic valves:
  - 10.5% mild AS (mean gradient < 25 mmHg)</li>
  - 2.9% moderate AS (mean gradient 25-45 mmHg)
  - 2.5% severe AS (mean gradient ≥ 45 mmHg)
- Predictive factor: calcification of mitral annulus

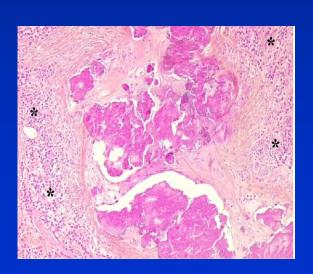
## **Aortic Sclerosis Predictive Factors**

#### Cardiovascular Health Study

|                | OR [IC 95%]      | p      |
|----------------|------------------|--------|
| Age (yrs)      | 2.2 [2.1-2.2]    | <0.001 |
| Male gender    | 2.0 [1.7-2.5]    | <0.001 |
| Lp(a)          | 1.2 [1.1-1.3]    | <0.001 |
| Height (cm)    | 0.84 [0.78-0.93] | 0.001  |
| Hypertension   | 1.2 [1.1-1.4]    | 0.002  |
| Active smoking | 1.4 [1.1-1.7]    | 0.006  |
| LDL (mg/dl)    | 1.12 [1.03-1.23] | 0.008  |

(Stewart et al. J Am Coll Cardiol 1997;29:630-4)

### Calcific Aortic Valve Disease and Atherosclerosis


Common risk factors
 (Age, HTA, smoking, LDL, diabetes)

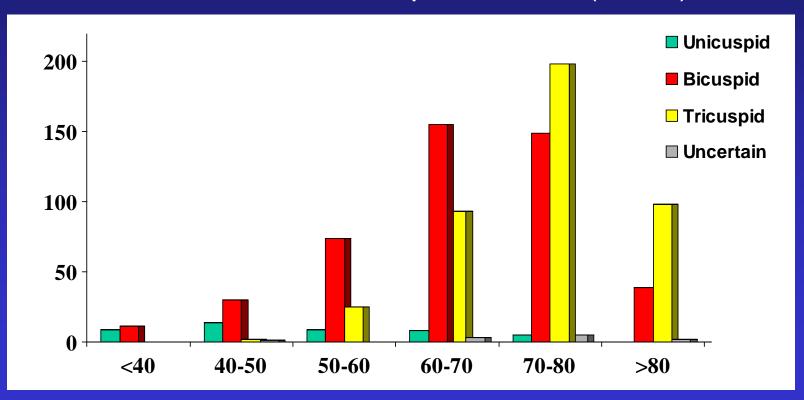


 Histologic and histochemical abnormalities

Aortic sclerosis and cardiovascular risk

(Otto et al. N Engl J Med 1999; 341:142-7)




**INSERM U698 Bichat** 

### AS and Valve Morphology According to Age

932 aortic valves excised during AVR for AS (1993-2004)

- 49% had bicuspid aortic valves
- Age at intervention

- bicuspid  $67 \pm 11 (27-91)$
- tricuspid  $74 \pm 8 (45-91)$



(Roberts et al. Circulation 2005;111:920-5)

#### **Progression of Aortic Stenosis in BAV**

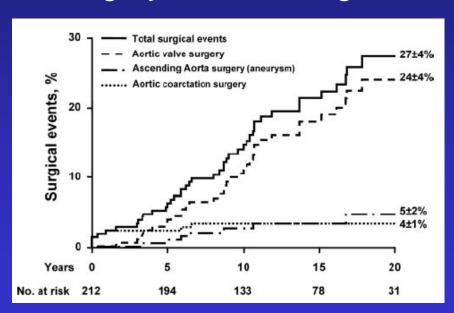
 In most cases, aortic stenosis is the consequence of a superimposed « degenerative » process

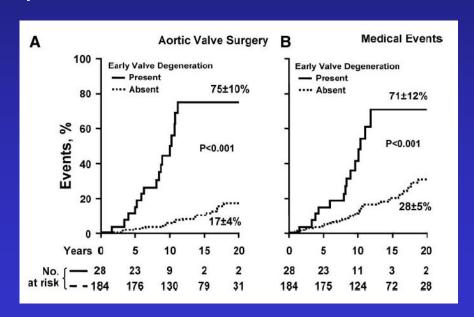


- Development of AS is also linked to cardiovascular risk factors in patients with BAV
  - Hypercholesterolemia

Hypertension

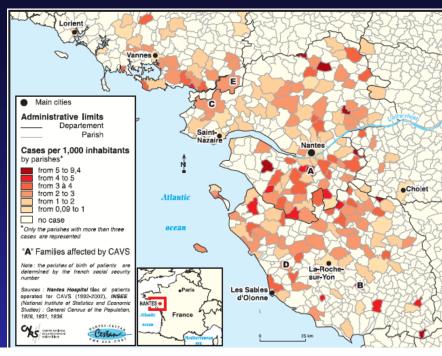
OR 1.8 [1.1-2.8]

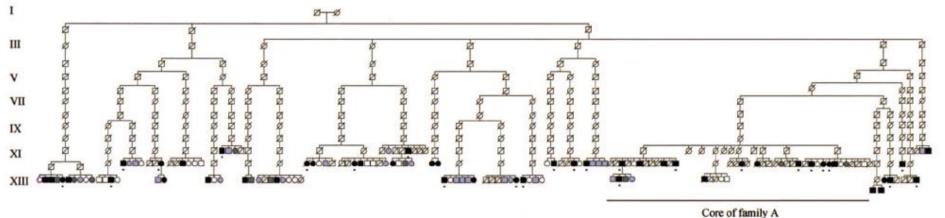

OR 2.6 [1.1-6.6]


(Chan et al. Am J Cardiol 2001;88:690-3)

#### **Natural History of Bicuspid Aortic Valve**

212 patients (32 ± 20 yrs) with normally functioning bicuspid aortic valve (gradient <20 mmHg and AR ≤ 1/4)


- AVR: 39 patients (27 for severe AS)
- Coarctation: 8 patients
- Surgery of ascending aorta: 8 patients



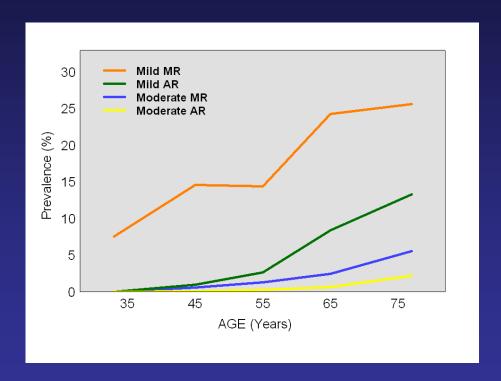



## Genetic Component of Aortic Stenosis

From geographic aggregation to genealogy






#### Valvular Regurgitations

- 2 881 pts from the Framingham cohort
- All had Doppler-echocardiography

|           | All | ≥ Mild | ≥ Moderate |
|-----------|-----|--------|------------|
|           | (%) | (%)    | (%)        |
| Mitral    | 90  | 19     | 1.6        |
| Aortic    | 11  | 4      | 0.5        |
| Tricuspid | 84  | 16     | 0.8        |

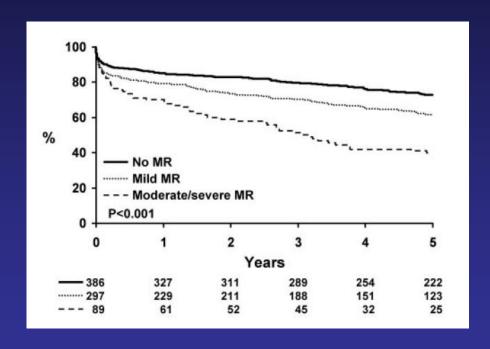
#### Valvular Regurgitations

Prevalence according to age



(Singh et al. Am J Cardiol 1999;83:897-902)

#### **Organic MR**

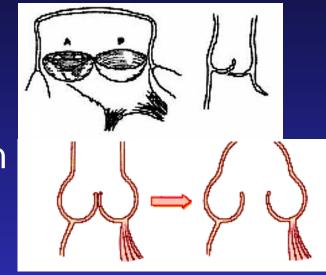



#### 3491 pts from the Framingham cohort

- 2.4% had mitral valve prolapse
   (1.3% classic, 1.1% non-classic)
- Mitral regurgitation was severe in 3.5% of them (7% of classic prolapse)
- No relationship with cardiovascular risk factors

## Ischemic MR After Myocardial Infarction Community-Based Study

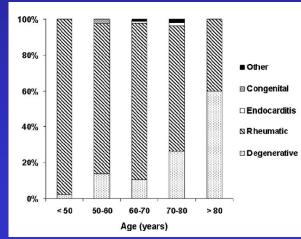
- 773 patients undergoing echocardiography within 30 days following myocardial infarction: 50% ≥ mild MR
- Overall Survival




 Ischemic MR was a predictor of death in multivariate analysis: adjusted HR 1.55 [1.08-2.22] p=0.019

(Bursi et al. Circulation 2005;111:295-301)

#### **Aortic Regurgitation**


- Degenerative AR
  - Valve prolapse
  - Dilatation of sinotubular junction



- Rheumatic heart disease
- Endocarditis
- Bicuspid valve
- Aortitis

#### **Mitral Stenosis**

- The only valvular disease to remain mainly due to rheumatic heart disease (85% of cases in Europe)
- 9% of single-valve disease in the Euro Heart Survey
- Mean age 58 years, 81% women
- 31% had previously undergone commissurotomy (9% percutaneous, 22% surgical)
- Seldom caused by calcific degenerative mitral valve disease (annulus + valve)



# **Developing Countries**Rheumatic Heart Disease

- Prevalence in school-age children when using clinical screening
  - 1-6 / 1000 in Asia

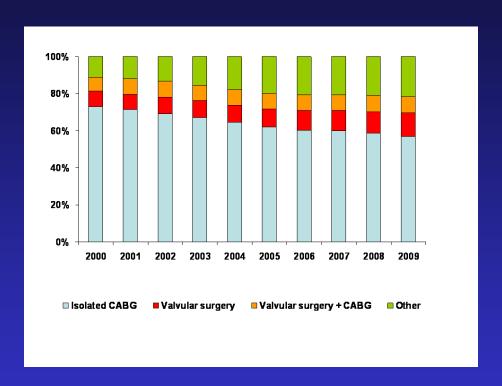
(*Carapetis Circulation 2008;118:2748-53*)

2-14 / 1000 in Africa

(Nkomo et al. Heart 2007; 93:1510-9)

< 20% of patients aware of valvular disease and 8% under prophylaxis</li>

(Rizwi et al. Heart 2004;90:394-9)


 Prevalence estimated at 22-30 / 1000 in school-age children when using echocardiographic screening

(Marijon et al. N Engl J Med 2007;357:470-6)

## **Developing Countries**Prevalence of Rheumatic Heart Disease



## Operated Patients STS Database



http://www.sts.org/documents/pdf/ndb2010/1stHarvestExecutiveSummary%5B1%5D.pdf

- Valvular surgery was AVR in 67% of cases in 2009
- Increase in patient age and comorbidities between 1997 and 2006

(Brown et al. JTCS 2009;137:82-90)

#### Conclusion (I)

- Valvular heart disease remains frequent in industrialised countries, where its prevalence increases in the elderly
- This is the consequence of the predominance of degenerative valvular diseases (mainly AS and MR), which represent a heterogeneous group
- Expected increase in prevalence
  - Population ageing
  - Lack of validated prevention strategies
- Impact on the complexity of decision-making
- Need for improving the understanding of the pathophysiology of degenerative valvular diseases

#### **Conclusion (II)**

- Valvular surgery accounts for more than 20% of all procedures of cardiac surgery and its proportion has increased over the last decade
- Need for the development of less invasive interventions
- Persistence of a high burden of rheumatic heart diseases in developing countries
  - Over-mortality in young patients
  - Underestimation from clinical screening
  - Need to implement strartegies of early diagnosis and prevention



#### **Infective Endocarditis**

|                                                             | French Survey | ICE      | Euro Heart Survey |
|-------------------------------------------------------------|---------------|----------|-------------------|
|                                                             | (n=390)       | (n=2781) | (n=159)           |
| Mean age (yrs)                                              | 59            | 58       | 56                |
| Male (%)                                                    | 71            | 68       | 70                |
| Prosthetic endocarditis (%)                                 | 16            | 21       | 26                |
| IV drug use (%)                                             | 6             | 10       | 5                 |
| Microorganisms (%)                                          |               |          |                   |
| <ul><li>streptococci (oral)</li><li>staphylococci</li></ul> | 58 (17)       | 39 (17)  | 42 (13)           |
|                                                             | 29            | 42       | 33                |
| Surgery (%)                                                 | 49            | 48       | 52                |
| In-hospital<br>mortality (%)                                | 16            | 18       | 13                |

Hoen et al. JAMA 2002;288:75-81 Murdoch et al. Arch Intern Med 2009;169:463-73 Tornos et al. Heart 2005;91:571-5

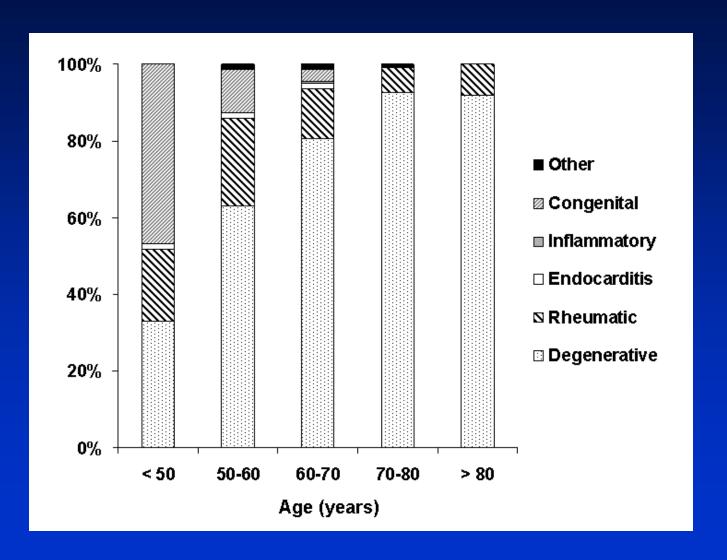
# From 1991 to 2008; some trends

| Per million                     | 1991        | 1999        | 2008        |
|---------------------------------|-------------|-------------|-------------|
| Overall crude incidence         | 31.4        | 31.0        | 29.5        |
|                                 | [28.1-35.0] | [27.7-34.5] | [26.4-32.8] |
| Overall standardized incidence* | 35.0        | 33.4        | 31.7        |
|                                 | [31.3-39.0] | [29.9-37.2] | [28.3-35.2] |

Incidences rate were calculated since both common regions to study: Rhône-Alpes, Lorraine and Paris et petite

courrone and on a population aged >=20 years old

<sup>\*</sup>standardized on the 2007 French population aged >=20 years old by age and by sex


# From 1991 to 2008; some trends

| Per million                                         | 1991       | 1999       | 2008      |  |
|-----------------------------------------------------|------------|------------|-----------|--|
| Standardized incidence by causative microorganisms* |            |            |           |  |
| Oral streptococci                                   | 8.0        | 6.3        | 6.3       |  |
|                                                     | [6.3-10.0] | [4.8-8.0]  | [4.9-8.0] |  |
| Group D streptococci                                | 6.4        | 8.4        | 4.0       |  |
|                                                     | [4.8-8.3]  | [6.7-10.5] | [2.9-5.4] |  |
| Staphylococcus aureus                               | 5.2        | 6.9        | 8.0       |  |
|                                                     | [3.9-6.8]  | [5.4-8.7]  | [6.3-9.8] |  |

Incidences rate were calculated since both common regions to study: Rhône-Alpes, Lorraine and Paris et petite courrone and on a population aged >=20 years old

<sup>\*</sup>standardized on the 2007 French population aged >=20 years old by age and by sex

#### **Etiologies of Aortic Stenosis**



(*Iung et al. Curr Prob Cardiol 2007;32: 609-61*)