

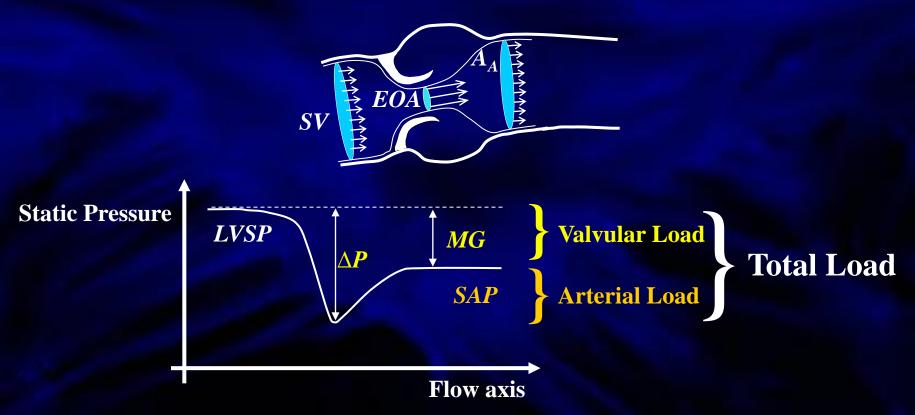
Clinical Significance of Valvulo-Arterial Impedance in Aortic Valve Stenosis

Dr. Julien Magne, PhD Sart Tilman Liège, BELGIUM

Conflict of Interest Disclosure

None

Valvulo-Arterial Impedance (Zva): Definition


Mechanical Impedance: a measure of how much a structure resists motion when subjected to a given force.

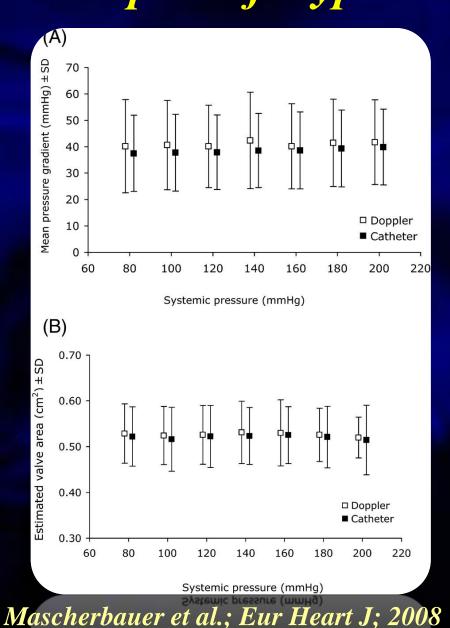
In Aortic stenosis: Zva represents the cost in mmHg for each systemic mL of blood indexed for body size pumped by the left ventricle during systole.

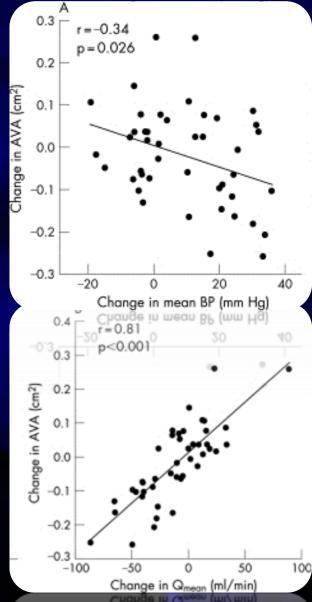
Zva provides an estimate of the global LV hemodynamic load that results from the summation of the valvular and vascular loads:

- stenosis severity
- volume flow rate
- body size
- systemic vascular resistance

Left Ventricular Afterload in Aortic Stenosis = Valvular Load + Arterial Load

Valvulo-Arterial Impedance

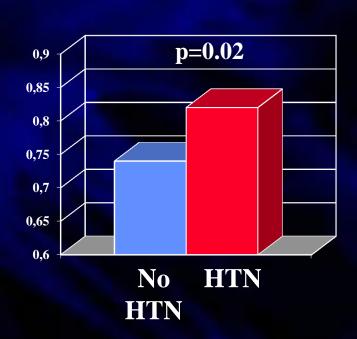

$$Z_{va} = \frac{LVSP}{SVi} = \frac{MG + SAP}{SVi}$$


>3.5: Moderate

>4.5: Severe

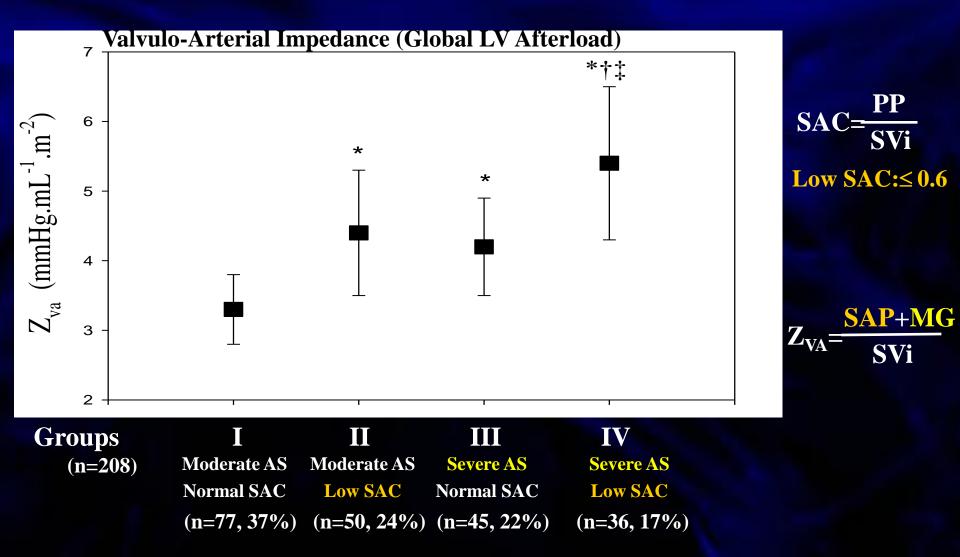
Courtesy from Dr Philippe Pibarot, Quebec Heart and Lung Institute, Qc, Canada.

Impact of Hypertension on AS Severity

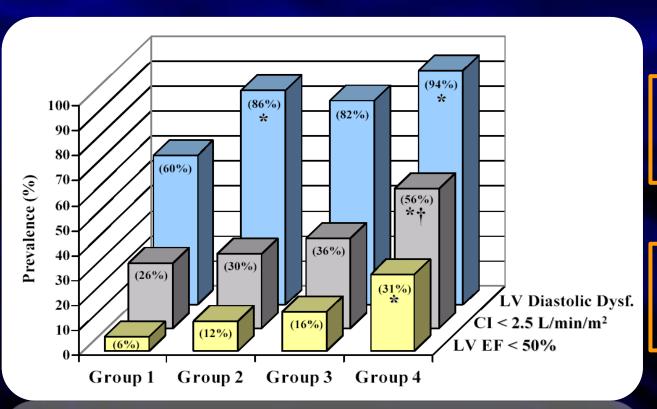


Little et al. Heart, 93:848-55. 2007

Impact of Hypertension on the Timing of Symptom Onset in AS


- ☐ 193 patients with symptomatic AS
- ☐ 32% had concomitant HTN
- Symptoms of AS develop at lower degree of stenosis severity in hypertensive patients, probably because of the additional overload due to hypertension.

AVA (cm²) at symptom onset


Antonini-Canterin et al.; Hypertension. 2003;41:1268-1272.

AS and Reduced Systemic Arterial Compliance: Impact on LV Afterload

Briand, JACC, 46:291-296,2005

AS and Reduced Systemic Arterial Compliance: Impact on LV Function

LV Diast. dysfunction Zva≥4.5 OR=5.4, p<0.0001

LV Syst. dysfunction Zva≥4.5 OR=4.2, p=0.001

Features of Patients with Elevated Zva

Usefulness of the Valvuloarterial Impedance to Predict Adverse Outcome in Asymptomatic Aortic Stenosis

Zeineb Hachicha, MD, Jean G. Dumesnil, MD, Philippe Pibarot, DVM, PHD Québec City, Québec, Canada

Asymptomatic patients with ≥moderate AS (peak Ao jet velocity ≥2.5m.s⁻¹) and LVEF>50%: n=544

Hachicha et al., JACC, 2009

Québec City, Québec, Canada

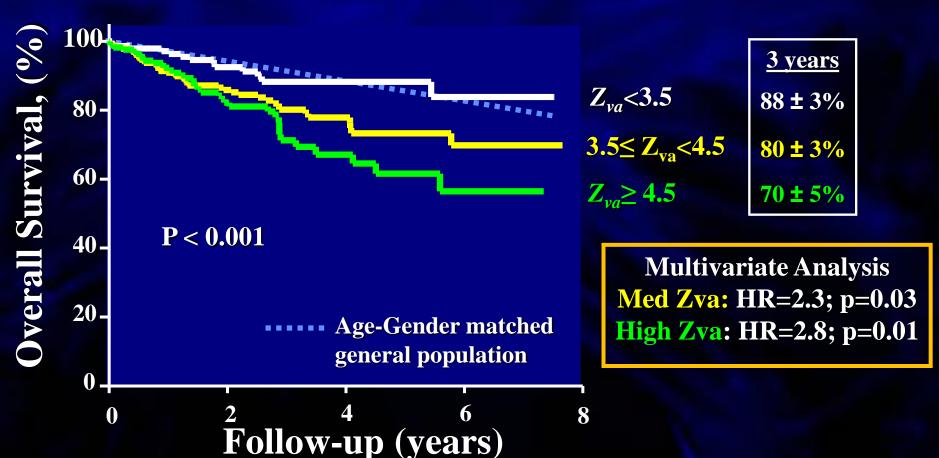
Low: Zva≤3.5 mmHg.mL⁻¹.m² n=172, 32%

Medium: 3.5-4.5 mmHg.mL⁻¹.m² n=192, 35%

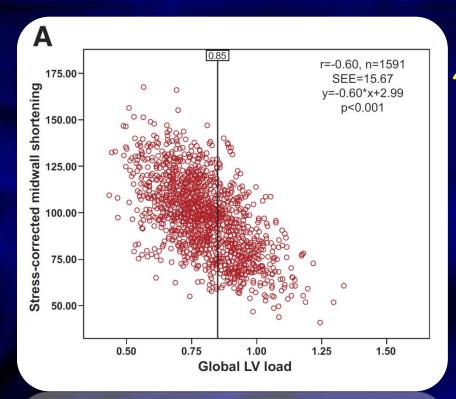
High: $\geq 4.5 \text{ mmHg.mL}^{-1}.\text{m}^2$ n=180, 33%

e Pibarot, DVM, PHD	Low Z _{va}	Medium Z _{va}	High Z _{va}	
Group	(n = 172)	(n = 192)	(n = 180)	p Value
Age, yrs	66 ± 15	70 ± 12 *	73 \pm 13* \dagger	< 0.001
Female sex	69 (40)	73 (38)	82 (46)	NS
Body surface area, m ²	$\textbf{1.8} \pm \textbf{0.2}$	$\textbf{1.8} \pm \textbf{0.2}$	$\textbf{1.8} \pm \textbf{0.2}$	NS
Body mass index, kg/m ²	$\textbf{27} \pm \textbf{6}$	$\textbf{27} \pm \textbf{5}$	$\textbf{28} \pm \textbf{5}$	NS
Obesity	39 (23)	53 (27)	55 (31)	NS
Hypertension	96 (56)	138 (72)*	128 (71)*	0.02
Hypercholesterolemia	93 (54)	109 (57)	76 (42)	NS
Diabetes	39 (23)	40 (21)	34 (19)	NS
Coronary artery disease	96 (56)	128 (67)	106 (59)	NS
Coronary artery disease	96 (56)	128 (67)	106 (59)	NS
Digneres	00 (50)	40 (57)	O4 (TO)	140

Features of Patients with Elevated Zva


Group	Low Z _{va} (n = 172)	Medium Z_{va} (n = 192)	High Z_{va} (n = 180)	p Value
Valvular load				
Aortic valve area, cm ²	$\textbf{1.2} \pm \textbf{0.2}$	1.0 ± 0.3*	$\textbf{0.8} \pm \textbf{0.2*} \boldsymbol{\dagger}$	< 0.0001
Aortic valve area index, cm ² ⋅m ⁻²	$\textbf{0.66} \pm \textbf{0.13}$	$\textbf{0.56} \pm \textbf{0.15}*$	$\textbf{0.45} \pm \textbf{0.12*} \boldsymbol{\dagger}$	<0.0001
Energy loss index, cm ² ⋅m ⁻²	$\textbf{0.78} \pm \textbf{0.18}$	$\textbf{0.65} \pm \textbf{0.23*}$	$0.51 \pm 0.15*\dagger$	<0.0001
Peak gradient, mm Hg	$\textbf{44} \pm \textbf{16}$	46 ± 20	56 ± 26*†	<0.0001
Mean gradient, mm Hg	$\textbf{25} \pm \textbf{10}$	$\textbf{27} \pm \textbf{12}$	34 \pm 17*†	< 0.0001
Vascular load				
Systolic arterial pressure, mm Hg	$\textbf{122} \pm \textbf{16}$	135 \pm 19*	$\textbf{145} \pm \textbf{23*} \boldsymbol{\dagger}$	< 0.001
Diastolic arterial pressure, mm Hg	68 ± 9	73 \pm 10*	$\textbf{78} \pm \textbf{10*} \textbf{\dagger}$	< 0.0001
Systemic arterial compliance, ml⋅m ⁻² ⋅mm Hg ⁻¹	$\textbf{0.94} \pm \textbf{0.24}$	$\textbf{0.69} \pm \textbf{0.18*}$	$\textbf{0.57} \pm \textbf{0.18*} \boldsymbol{\dagger}$	< 0.0001
Systemic vascular resistance, dyne·s·cm ⁻⁵	$\textbf{1,303} \pm \textbf{287}$	1,605 ± 361*	1,824 \pm 398*†	< 0.001
Global LV hemodynamic load				
Valvuloarterial impedance, mm Hg·ml ⁻¹ ⋅m ²	$\textbf{3.1} \pm \textbf{0.4}$	$\textbf{4.0} \pm \textbf{0.3*}$	$\textbf{5.2} \pm \textbf{0.9*} \boldsymbol{\dagger}$	< 0.0001
Valvuloarterial impedance, mm Hg·ml ⁻¹ ·m ²	3.1 ± 0.4	4.0 ± 0.3*	5.2 ± 0.9*†	<0.0001
Global LV hemodynamic load				
Systemic vascular resistance, dyne-s-cm ⁻⁵	$1,303 \pm 287$	1,605 ± 361*	1,824 ± 398*†	< 0.001
		Hachia	cha et al., JAC	C 2009

Features of Patients with Elevated Zva


Croun	Low Z _{va}	Medium Z _{va}	High Z _{va}	n Volus
Group	(n = 172)	(n = 192)	(n = 180)	p Value
LV geometry				
IVSTd, mm	12 ± 3	12 ± 2	13 ± 3*†	< 0.001
PWTd, mm	10 ± 2	11 ± 2	11 ± 2 *	0.02
LVIDd, mm	48 ± 5	47 ± 5	45 ± 5*†	< 0.001
LVEDV, ml	$\textbf{111} \pm \textbf{27}$	$\textbf{106} \pm \textbf{27}$	96 ± 25*†	< 0.001
LVEDV index, ml·m ⁻²	$\textbf{61} \pm \textbf{13}$	58 ± 13*	52 ± 12*†	< 0.001
Relative wall thickness, %	$\textbf{44} \pm \textbf{10}$	46 ± 10*	49 ± 10*†	< 0.001
LV systolic function				
LV ejection fraction, %	67 ± 7	66 ± 7	65 ± 7*	0.025
Stroke volume, ml	$\textbf{87} \pm \textbf{16}$	75 ± 12*	65 ± 15*†	< 0.001
Stroke volume index, ml⋅m ⁻²	$\textbf{48} \pm \textbf{8}$	41 ± 5*	35 ± 7*†	< 0.001
Cardiac output, I⋅min ⁻¹	$\textbf{5.5} \pm \textbf{1.2}$	$\textbf{4.8} \pm \textbf{1.0} \star$	4.6 \pm 1.1*†	< 0.001
Cardiac index, I⋅min ⁻¹ ⋅m ⁻²	$\textbf{3.1} \pm \textbf{0.7}$	$\textbf{2.6} \pm \textbf{0.5*}$	$\textbf{2.5} \pm \textbf{0.5*} \textbf{\dagger}$	< 0.001
Mean transvalvular flow rate, ml⋅s ⁻¹	$\textbf{268} \pm \textbf{61}$	$\textbf{232} \pm \textbf{49*}$	210 \pm 55*†	< 0.001
LV diastolic function, %				
Normal	20	13	11	NS
Abnormal	80	87	89	< 0.001
Abnormal	80	87	89	< 0.001
Normal	20	13	11	NS

Prognostic Impact of Global Afterload

Retrospective analysis of 544 asymptomatic pts \geq moderate AS (\geq 2.5 m/s), LVEF \geq 50%; Follow-up 2.5±1.8 years

Hachicha et al., JACC, 2009

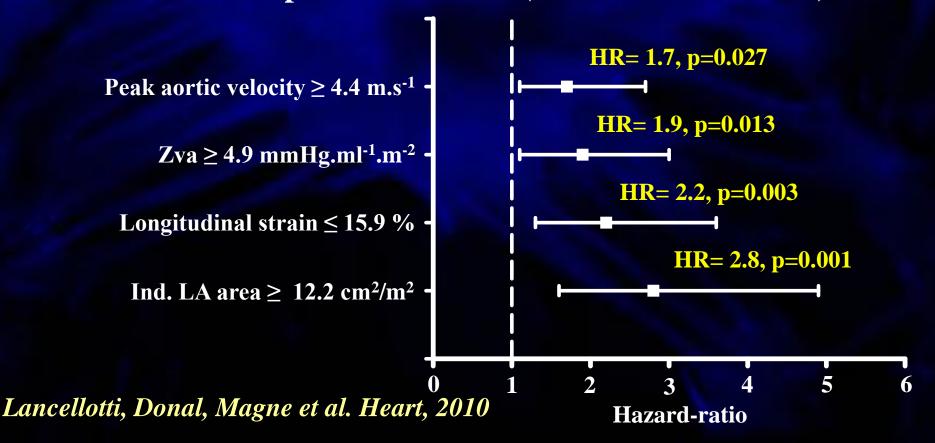
Zva in the SEAS trial

n=1 591 asymptomatic patients with AS (67±10 yrs, 51% of hypertensive, 39% of women

Cramariuc et al. JACC CV Img, 2009

In patients with asymptomatic AS without diabetes or known CAD:

- LVEF generally preserved
- LV myocardial dysfunction: 33%


LV myocardial dysfunction:

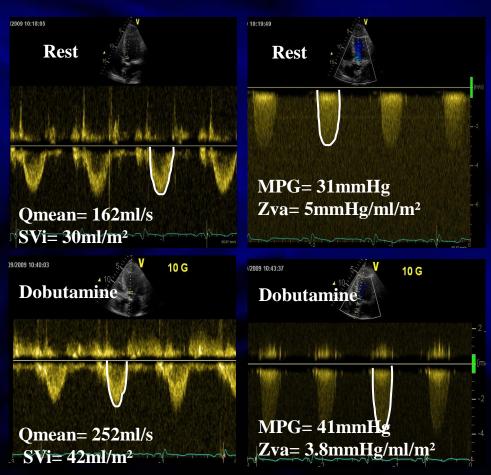
- common in patients with increased Zva
- especially in the subgroup with low-flow AS
- more concentric LV geometry, LV hypertrophy, and male

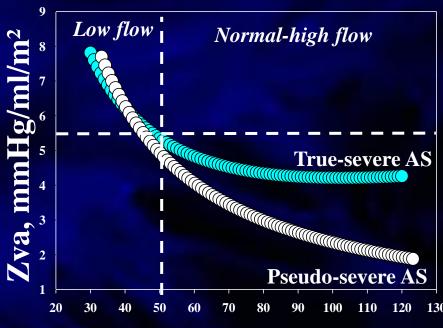

Zva in Asymptomatic AS

Prospective study: 163 patients with asymptomatic AS and preserved LV function

Adjustment for gender, systemic arterial compliance, E-wave, E/A ratio and response to exercise (abnormal vs. normal)

Zva in LF/LG AS

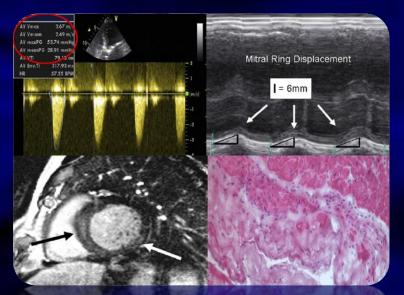

n=184 patients with severe LF/LG AS included in the French study.



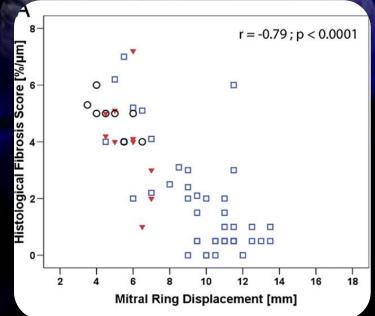
Valvuloarterial impedance (Zva) threshold (mmHg/mL/m²)	P-value to predict perioperative mortality (by univariate analysis)	Results of multivariate analysis to predict perioperative mortality	Results of multivariate analysis to predict 5 year mortality
4	0.48	HR: 0.37 (0.064–2.131); P = 0.43	OR: 0.73 (0.27–1.98); P = 0.54
4.5	0.54	HR: 2.24 (0.34–11.91); $P = 0.35$	OR 1.07 (0.48-2.37); P = 0.87
5	0.99	HR 0.78 (0.14–4.38); $P = 0.78$	OR 0.59 (0.28–1.22); $P = 0.16$
5.5	0.66	HR 0.57 (0.10 -3.54); $P = 0.57$	OR 0.60 (0.28–1.29); $P = 0.19$
6	0.62	HR 1.30 (0.22–7.57); $P = 0.77$	OR 1.04 (0.50–2.14); $P = 0.91$

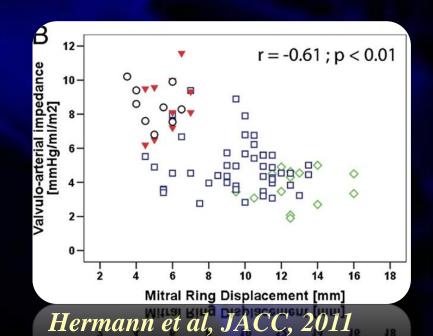
Zva in LF/LG AS

Zva vs. SV in patients with true-severe and pseudo-severe AS.

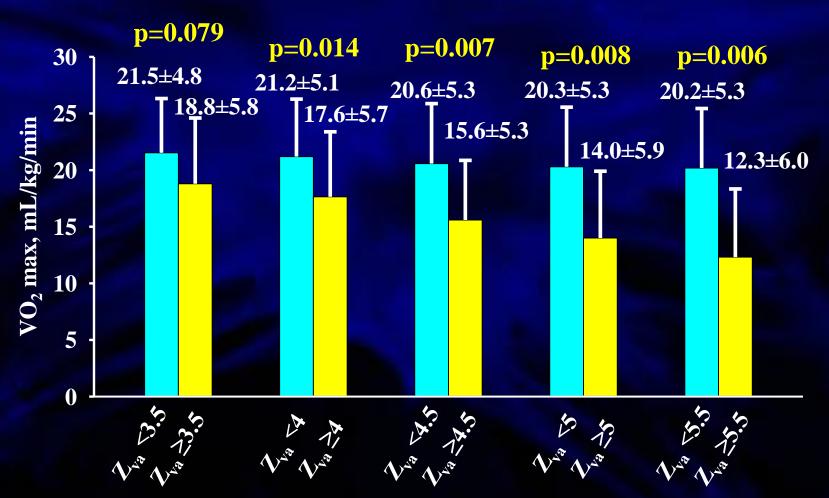


LV stroke volume, ml

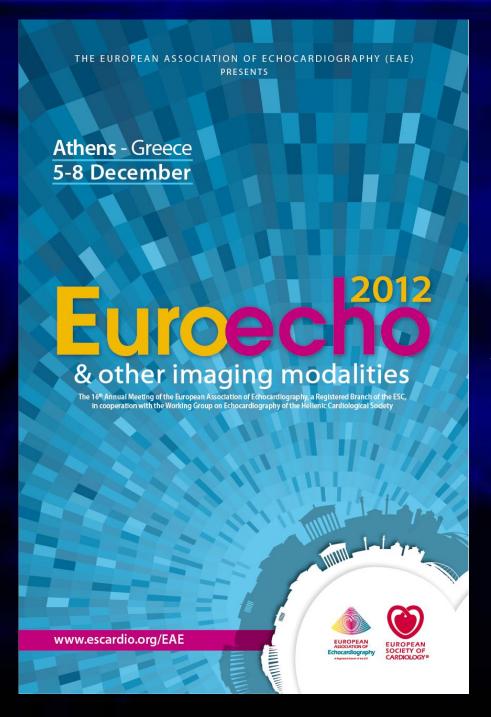

BSA was assumed at 1.8 m², LVED vol at 120 mL, HR at 65 b.p.m., and SAP at 120 mmHg.


Lancellotti and Magne, Editorial, EJ Echo, 2011

Myocardial Function and Zva in Severe AS



Depressed LV longitudinal function,
basal septal and lateral LGE,
elevated myocardial fibrosis score,
and high myocyte diameter


Maximal Exercise Capacity and Zva

Valvulo-Arterial Impedance (Z_{va}), mmHg/mL/m²

Conclusion

- □ Blood pressure should be routinely measured in the echo lab. and Zva calculated
- ☐ High Zva in AS patients is an accurate marker of advanced stage of the disease and is associated with reduced maximal exercise capacity
- ☐ High Zva is associated with poor mid- and long-term outcome, even in asymptomatic patients
- ☐ In patients with severe asymptomatic AS and high Zva, follow-up could be shorten and exercise test and/or exercise echo should be recommended

DON'T MISS

5-8 December 2012 MAICC – Athens, Greece

Abstract submission deadline 31 May

Early bird registration 30 September

Thank you for your attention.

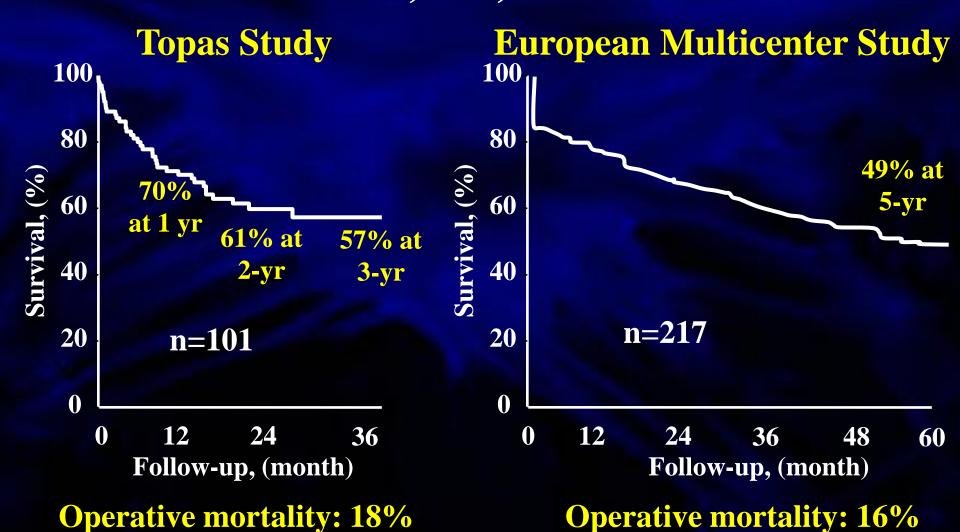
Fonds Léon Frederica

"In these matters the only certainty is that nothing is certain."

Pliny The Elder, 23 AD-79 AD

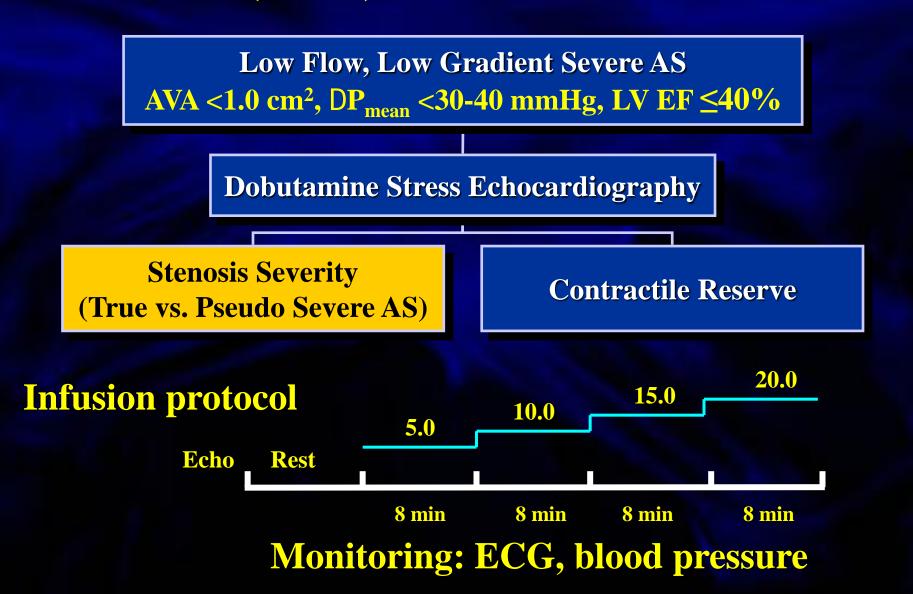
Université de Liège

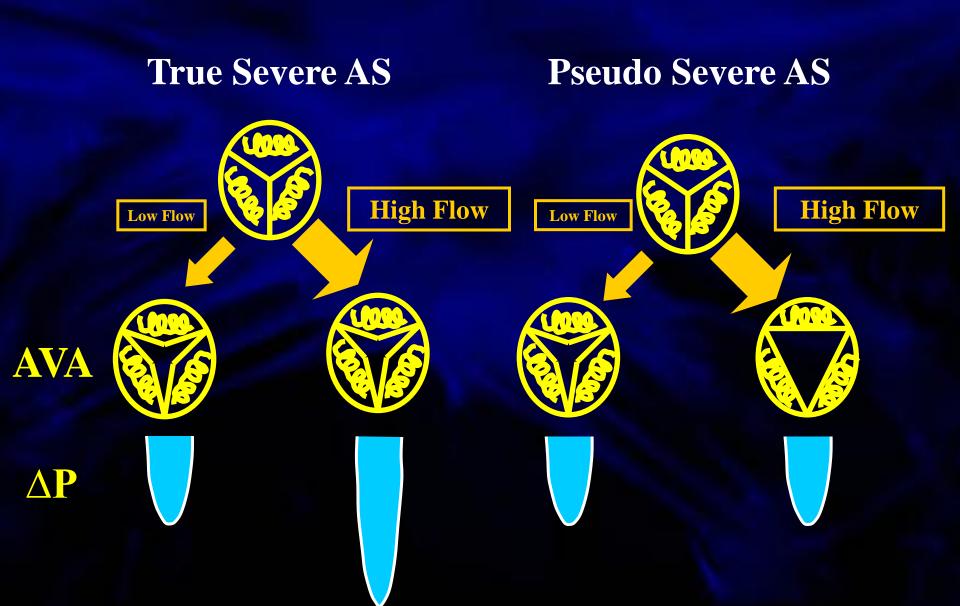
"Severe" AS with Low Gradient and Low LVEF


- \square AVA ≤ 1.0 cm²
- Mean gradient ≤ 30-40 mmHg
- \square LVEF $\leq 40\%$

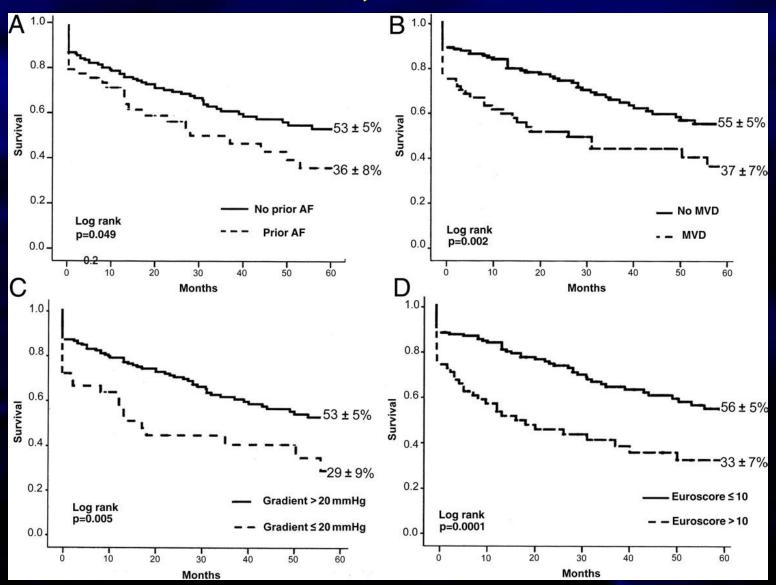
■ Approximately 5-10% of AS population

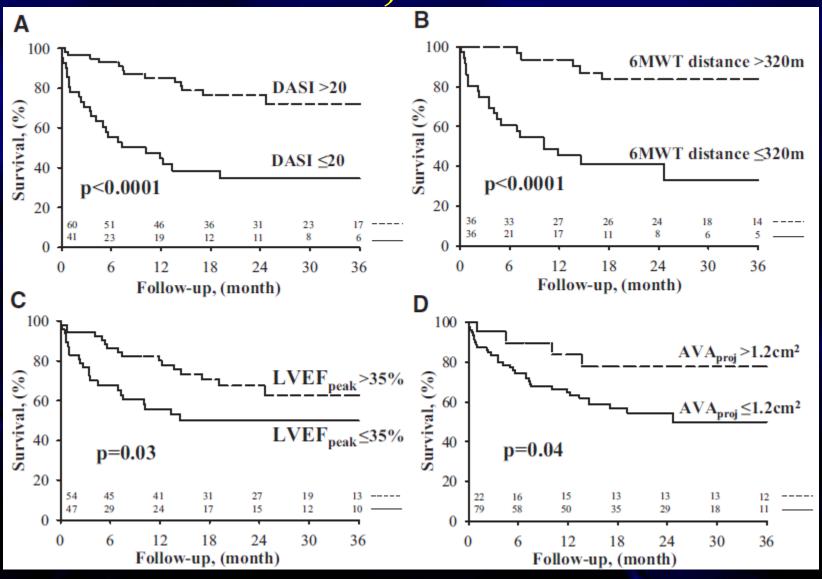
- High risk patients:
 - **□** 3-year survival 50-60%
 - ☐ If operated (AVR): operative mortality: 8-30%


Prospective Studies: Topas/Euro Trial Severe AS, LG, Low LVEF


Clavel et al. Circulation, 2008

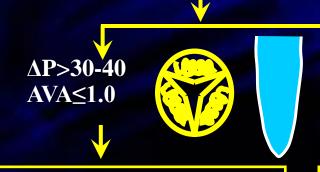
Levy et al. JACC, 51:1466-72, 2008

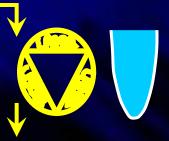

Usefulness of Dobutamine Stress Echo (DSE) in LF/LG AS


True Severe AS vs. Pseudo Severe AS?

Risk Stratification in LF/LG Severe AS, Low LVEF

Risk Stratification in LF/LG Severe AS, Low LVEF


Dobutamine Sress Echo


↑SV < 20 %

Contractile Reserve

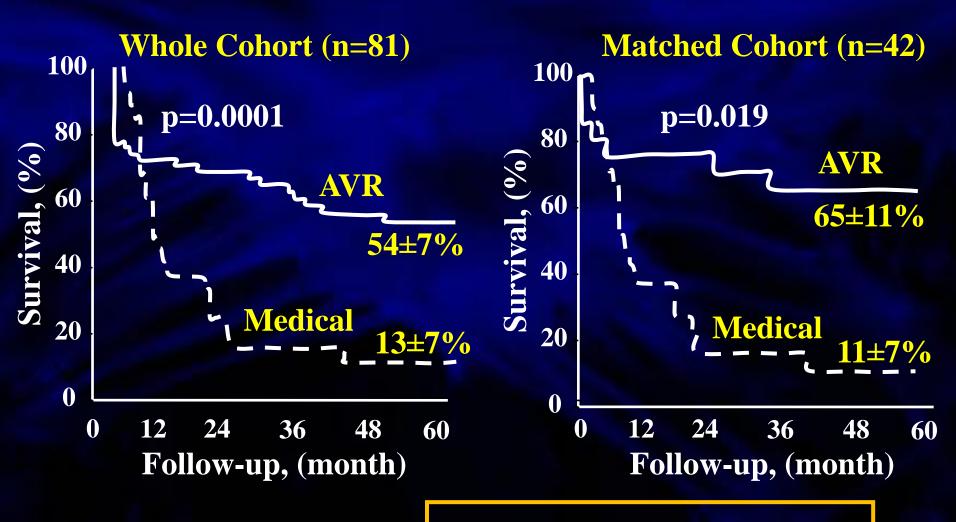
No Contractile Reserve

ΔP≤30-40 AVA>1.0

ΔP<30-40 AVA≤1.0

True Severe AS

 $\overrightarrow{AVR} \pm \mathbf{CABG}$

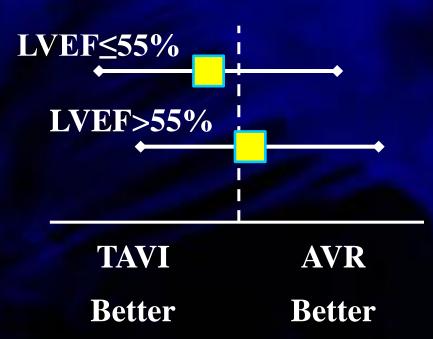

Pseudo Severe AS

MEDICAL

Indeterminate

AVR? MEDICAL?

Ouctome after AVR in Patients without Contractile Reserve



Tribouilloy et al. JACC, 2009

⇒Operative Mortality: 22%

Ouctome after TAVI in LF/LG Severe AS

Partner Study

TAVI in LF/LG

	Patients with low-flow, low gradient aortic stenosis (n = 15)	Patients without low-flow, low gradient aort stenosis (n = 152)	ic
Age (years)	79 ± 6	79 ± 6	0.997
Women, n (%)	5 (33)	83 (55)	0.174
Log EuroSCORE (%)	38 ± 20	19 ± 14	< 0.001
Aortic valve area (cm ²)	0.7 ± 0.1	0.7 ± 0.1	0.818
Aortic mean gradient (mm Hg)	27 ± 7	48 ± 13	< 0.001
Left ventricular ejection fraction (%)	32 ± 6	57 ± 11	< 0.001
Diabetes mellitus, n (%)	5 (33)	50 (33)	1.000
Coronary artery disease, n (%)	12 (80)	70 (46)	0.015
Prior myocardial infarction, n (%)	6 (40)	29 (19)	0.062
Prior PCI, n (%)	6 (40)	41 (27)	0.368
Prior CABG, n (%)	5 (33)	16 (11)	0.012
Atrial fibrillation, n (%)	5 (33)	53 (35)	1.000
Prior stroke, n (%)	3 (20)	12 (8)	0.140
Kidney disease, n (%)	11 (73)	75 (49)	0.458
COPD, n (%)	3 (20)	48 (32)	0.558

Early mortality: 33%, p=0.037

Gotzmann et al., Cath CV Interv, 2011

Smith et al., NEJM, 2011

(Circulation. 2007;115:2856-2864.)

Paradoxical Low-Flow, Low-Gradient Severe Aortic Stenosis Despite Preserved Ejection Fraction Is Associated With Higher Afterload and Reduced Survival

Zeineb Hachicha, MD; Jean G. Dumesnil, MD; Peter Bogaty, MD; Philippe Pibarot, DVM, PhD

n = 512

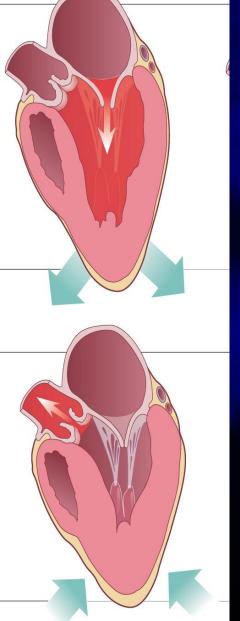
SEVERE AS $(AVAi \le 0.6 \text{ cm}^2/m^2)$

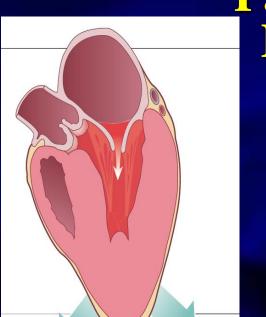
PRESERVED LV FUNCTION $(LVEF \ge 50\%)$

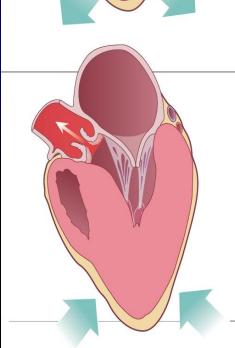
331 patients (65%) $SVI > 35\text{ml/m}^2$ $Normal\ Flow\ (NF)\ Group$ 181 patients (35%)
SVI ≤ 35ml/m²

Paradoxical Low Flow
(PLF) Group

Normal Flow AS


LVEDV: 115 ml


LVEF: 60%


SV: 70 ml

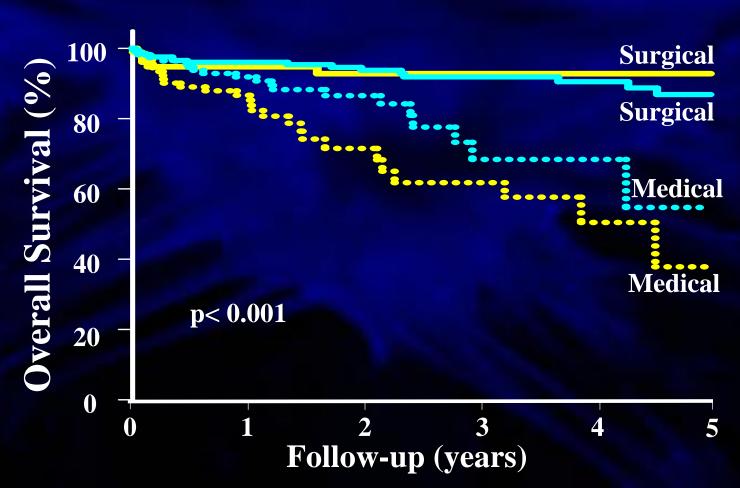
AVA: 0.7 cm²

 ΔP : 45 mmHg

Paradoxical Low Flow AS

LVEDV: 85 ml

LVEF: 60%

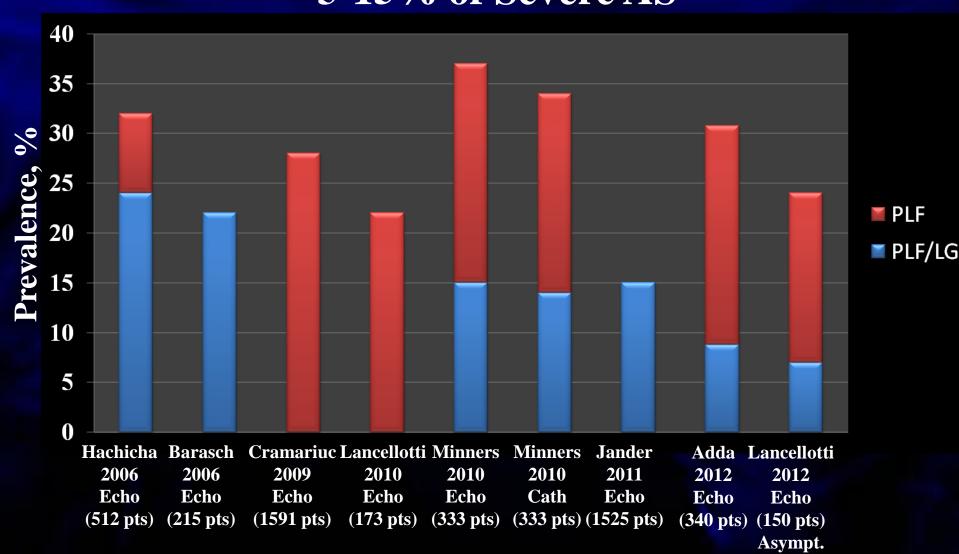

SV: 50 ml

AVA: 0.7 cm²

 ΔP : 25 mmHg

Pibarot & Dumesnil iJACC; 2:400-3, 2009

Outcome of Patients with Paradoxical Low Flow

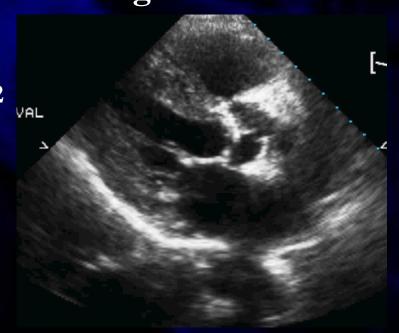

Hachicha Z et al., Circulation. 115:2856-2864, 2007

NF: Normal Flow: SVI>35 (65%)

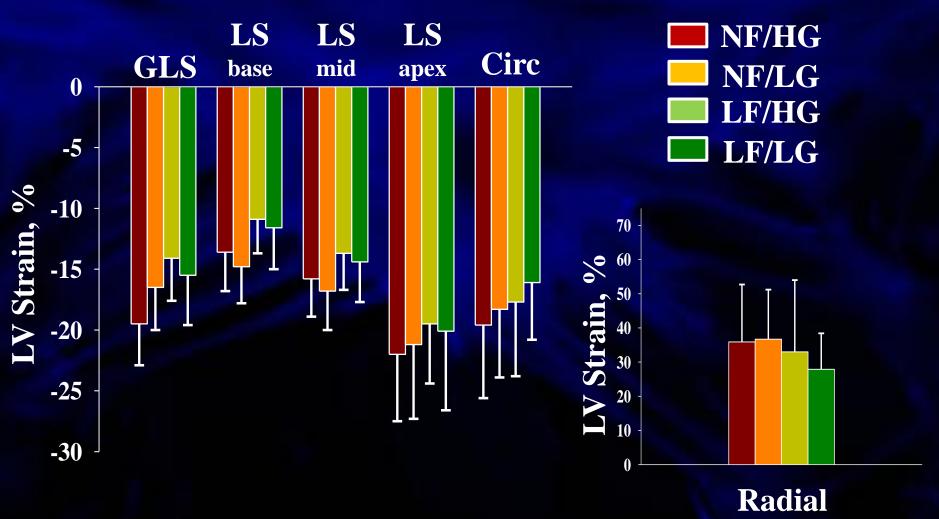
PLF: Paradoxical Low Flow: SVI≤35 (35%)

Prevalence of PLF/LG Severe AS

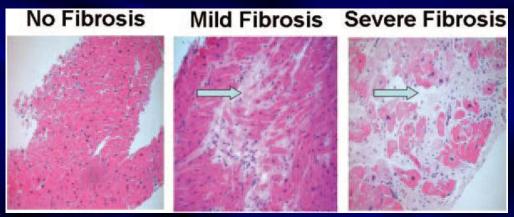
 \approx 5-15% of Severe AS


Echo Features of Paradoxical LF/LG Severe AS

The Aortic Valve:


- \square AVA < 1.0 cm² AVA i < 0.6 cm²/m²
- **☐** Severely thickened/calcified valve
- ☐ Mean gradient <40 mmHg
- □ Valvulo-arterial impedance > 4.5 mmHg.ml⁻¹.m⁻²

The Left Ventricle


- \square EDD<47 mm EDV< 55 mL/m² VAL
- \square RWT ratio > 0.50
- **Impaired LV filling**
- \square LVEF > 50%
- \square GLS < 16% GRS < 30%
- \square SVi < 35 mL/m²

Advanced Echo Features of Paradoxical LF/LG Severe AS

Myocardial Function in Paradoxical LF/LG Severe AS

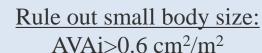
Characterized by similar
LVEF and AVA but lower
MPG and LV SV

Weidemann, Hermann et al, Circ, 2009

Depressed LV longitudinal function, basal septal and lateral LGE, elevated myocardial fibrosis score, and high myocyte diameter

Hermann et al, JACC, 2011

Discordant Findings:


AVA $<1.0 \text{ cm}^2$ & $\Delta P_{\text{mean}}<40 \text{ mmHg}$ LVEF>50%

Rule out measurement errors:

corroborating methods:

(Teichholz, Simpson, 3D-contrast,

AV Planimetry)

Features of paradoxical low flow:

SVi≤35 mL/m² Zva>4.5

EDD<47 mm EDVi<55 ml/m²

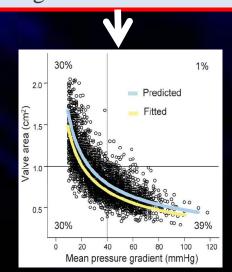
RWTR>0.50 GLS<16%

Present:

Consider paradoxical low flow AS

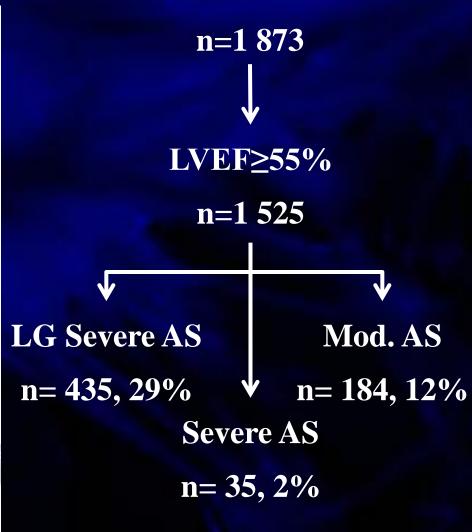
Rule out pseudo-severe AS:

Valve morphology by echo
Exercise/dobutamine stress echo
Calcium score by CT
BNP

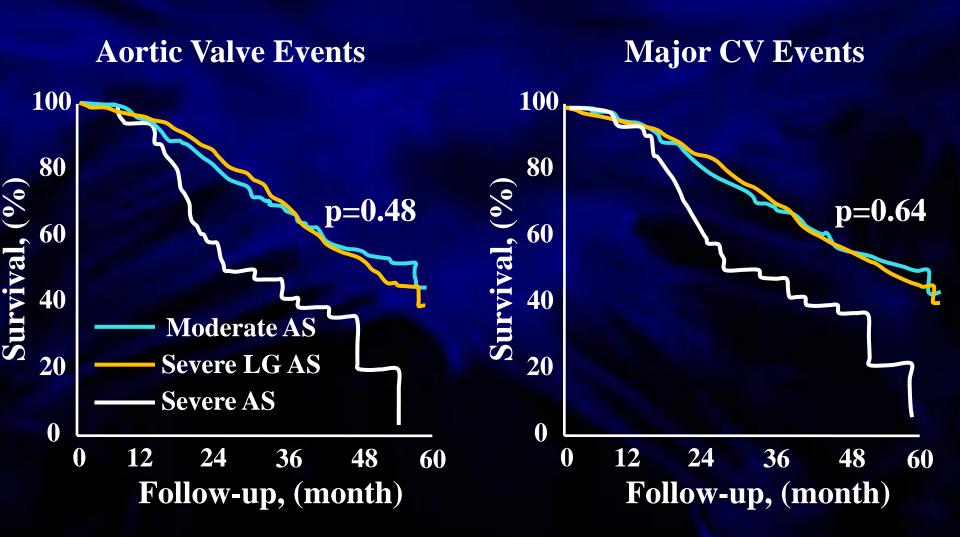

W

Consider paradoxical low flow severe AS:

AVR


Absent:

Consider inconsistencies in guidelines criteria


Outcome of Paradoxical LF/LG Severe AS SEAS trial

	Aortic Valve Stenosis		
	Low-Gradient "Severe" (AVA $<$ 1.0 cm ² ; MPG \leq 40 mm Hg) (n=435)	Moderate (AVA 1.5-1.0 cm ² ; MPG 25-40 mm Hg) (n=184)	P
Aortic valve			
Peak aortic jet velocity, m/s	3.3 ± 0.5	3.6 ± 0.3	< 0.01
Transaortic peak pressure gradient, mm Hg	44.8±11.9	53.0±7.4	< 0.01
Transaortic mean pressure gradient, mm Hg	26.2±7.3	31.2±4.1	< 0.01
Aortic valve area, cm	0.82 ± 0.13	1.19±0.13	< 0.01
Aortic valve area index, cm /m	0.46 ± 0.08	0.63 ± 0.09	< 0.01
Velocity time integral aortic valve, cm	78.0 ± 13.0	82.0±10.0	< 0.01
Dimensionless velocity index	0.26 ± 0.06	0.30 ± 0.06	< 0.01
Stroke volume			
LV outflow tract diameter, mm	20.2 ± 0.2	22.8 ± 0.2	< 0.01
Velocity time integral LV outflow tract, cm	20.1 ± 4.1	24.2 ± 4.9	< 0.01
Stoke volume, mL	63.8±13.1	97.5±13.9	< 0.01
Stoke volume index, mL/m	35.1±7.3	50.7±8.5	< 0.01
Cardiac output, L/min	4.3 ± 1.0	6.6 ± 1.2	< 0.01
Cardiac index, L/min	2.4 ± 0.56	3.4 ± 0.71	< 0.01
LV			
LV ejection fraction, %	66.9 ± 5.7	66.7 ± 5.8	0.68
LV end-diastolic diameter, mm	49.0 ± 6.1	50.7 ± 5.6	< 0.01
LV end-diastolic diameter index, mm/m	26.9 ± 3.4	26.3 ± 3.2	0.04
LV end-diastolic volume, mL	115.3±32.7	124.4±31.1	< 0.01
LV end-diastolic volume index, mL/m	63.0 ± 16.5	64.3 ± 15.6	0.36
LV end-systolic diameter, mm	31.0±5.1	31.6±5.0	0.18
LV end-systolic diameter index, mm/m	17.0 ± 2.7	16.4±2.7	
Fractional shortening, %	36.8 ± 5.6	37.8±6.0	0.05
LV end-diastolic septum thickness, mm	11.4±2.8	12.3±2.9	< 0.01
LV end-diastolic posterior wall thickness, mm	8.8±1.9	9.4±1.9	< 0.01
LV mass, g	182.3±63.6	211.6±67.5	< 0.01
LV mass index, g/m	98.9±30.6	108.9±33.3	< 0.01
Relative wall thickness, %	36.5±9.5	37.3±8.9	0.30

Jander et al, Circulation, 2011

Outcome of Paradoxical LF/LG Severe AS

Jander et al, Circulation, 2011

Outcome of Paradoxical LF/LG

	Aortic Valve Stenosis			
	Low-Gradient "Severe" (AVA <1.0 cm²; MPG ≤40 mm Hg) (n=435)	Moderate (AVA 1.5–1.0 cm²; MPG 25–40 mm Hg) (n=184)	P	
Aortic valve				
Peak aortic jet velocity, m/s	3.3 ± 0.5	3.6 ± 0.3	< 0.01	
Transaortic peak pressure gradient, mm Hg	44.8±11.9	53.0 ± 7.4	< 0.01	
Transaortic mean pressure gradient, mm Hg	26.2 ± 7.3	31.2±4.1	< 0.01	
Aortic valve area, cm	0.82 ± 0.13	1.19±0.13	< 0.01	
Aortic valve area index, cm /m	0.46 ± 0.08	0.63 ± 0.09	< 0.01	
Velocity time integral aortic valve, cm	78.0±13.0	82.0±10.0	< 0.01	
Dimensionless velocity index	0.26 ± 0.06	0.30 ± 0.06	< 0.01	
Stroke volume				
LV outflow tract diameter, mm	20.2 ± 0.2	22.8 ± 0.2	< 0.01	
Velocity time integral LV outflow tract, cm	20.1 ± 4.1	24.2 ± 4.9	< 0.01	
Stoke volume, mL	63.8±13.1	97.5±13.9	< 0.01	
Stoke volume index, mL/m	35.1±7.3	50.7 ± 8.5	< 0.01	
Cardiac output, L/min	4.3±1.0	6.6±1.2	< 0.01	
Cardiac index, L/min	2.4 ± 0.56	3.4 ± 0.71	< 0.01	
LV				
LV ejection fraction, %	66.9±5.7	66.7 ± 5.8	0.68	
LV end-diastolic diameter, mm	49.0±6.1	50.7±5.6	< 0.01	
LV end-diastolic diameter index, mm/m	26.9±3.4 7	7.1 26.3±3.2 82	9 0.04	
LV end-diastolic volume, mL	115.3±32.7	124.4±31.1	< 0.01	
LV end-diastolic volume index, mL/m	63.0±16.5	64.3±15.6	0.36	
LV end-systolic diameter, mm	31.0±5.1	31.6±5.0	0.18	
LV end-systolic diameter index, mm/m	17.0±2.7	16.4±2.7	< 0.01	
Fractional shortening, %	36.8 ± 5.6	ა/.ა≝ნ.0	ບ.ບວ	
LV end-diastolic septum thickness, mm	11.4±2.8	12.3±2.9	< 0.01	
LV end-diastolic posterior wall thickness, mm	8.8±1.9	9.4±1.9	< 0.01	
LV mass, g	182.3±63.6	211.6±67.5	< 0.01	
LV mass index, g/m	98.9±30.6	108.9±33.3	< 0.01	
Relative wall thickness, %	36.5±9.5	37.3±8.9	0.30	

Similar AS severity, similar outcome!

AVA: 0.99 vs. 1.01 cm² AVAi: 0.54 vs 0.52 cm²/m²

SVi: 42.1 vs. 42.7 mL/m²

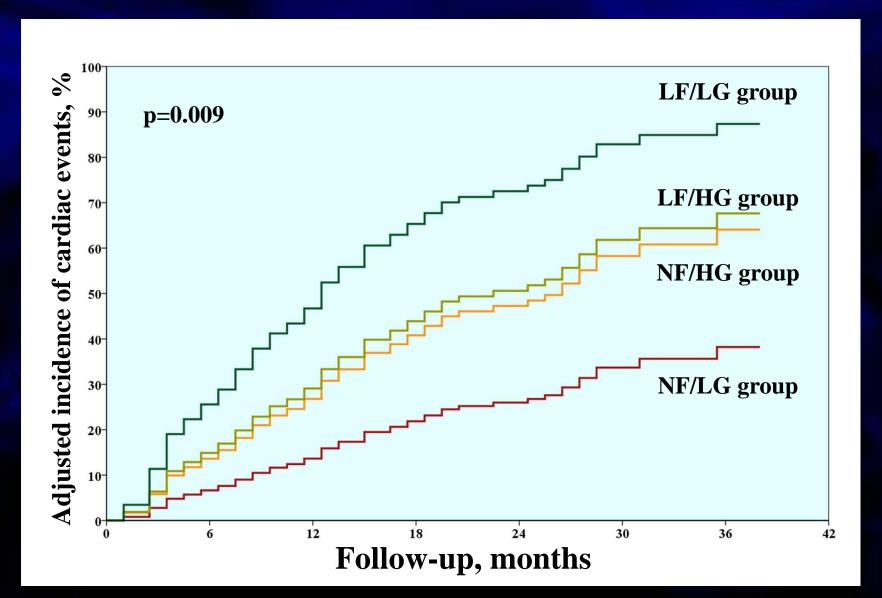
BSA: 1.83m² vs. 1.94m²

Jander et al, Circulation, 2011

Asymptomatic Paradoxical LF/LG Severe AS

Clinical Outcome in Asymptomatic Severe Aortic Stenosis

Insights From the New Proposed Aortic Stenosis Grading Classification JACC Vol. 59, No. 3, 2012 January 17, 2012:224-32


Patrizio Lancellotti, MD, PhD,* Julien Magne, PhD,* Erwan Donal, MD, PhD,† Laurent Davin, MD,* Kim O'Connor, MD,*‡ Monica Rosca, MD,* Catherine Szymanski, MD,* Bernard Cosyns, MD, PhD,§ Luc A. Piérard, MD, PhD*

Asymptomatic severe AS with preserved LV ejection fraction,

n=150

	NF/LG (n = 46) (31%)	NF/HG (n = 78) (52%)	LF/HG (n = 15) (10%)	LF/LG (n = 11) (7%)	p Value
Age, yrs	69 ± 8	71 ± 10	71 ± 8	65 ± 14	NS
Male, %	29 (63)	53 (68)	9 (60)	5 (45)	NS
Body surface area, m ²	$\textbf{1.8} \pm \textbf{0.2}$	1.8 \pm 0.2	1.9 ± 0.2	1.8 ± 0.2	NS
AVA, cm ²	$\textbf{0.85} \pm \textbf{0.08}$	$\textbf{0.79} \pm \textbf{0.1}$	0.74 ± 0.15*	$\textbf{0.80} \pm \textbf{0.14}$	0.04
Indexed AVA, cm ² /m ²	0.47 ± 0.07	$\textbf{0.45} \pm \textbf{0.08}$	$0.39 \pm 0.09*$	0.45 ± 0.09	0.04
Peak aortic velocity, m/s ⁻¹	3.5 ± 0.4	4.5 ± 0.6*	4.6 ± 0.4*	3.8 ± 0.5†‡	< 0.0001
Mean aortic gradient, mm Hg	32 ± 5	53 ± 12*	50 ± 14*	33 ± 5†‡	< 0.0001
Valvulo-arterial impedance, mm Hg/ml/m ²	$\textbf{3.7} \pm \textbf{0.8}$	3.9 ± 0.9	5.9 ± 1.1 *†	6.0 ± 1.1 *†	< 0.0001
LVEDV index, ml/m ²	58 ± 14	61 ± 18	55 ± 14	52 ± 16	NS
LVESV index, ml/m ²	21 ± 7	23 ± 12	$\textbf{20} \pm \textbf{11}$	19 ± 12	NS
LV stroke volume, ml	$\textbf{74} \pm \textbf{16}$	73 ± 16	63 ± 7*†	59 ± 10*†	0.003
Indexed LV stroke volume, ml/m ²	$\textbf{41} \pm \textbf{10}$	41 ± 11	33 ± 2*†	31 ± 2*†	< 0.0001
LVEF, %	67 ± 8	67.0 ± 7.5	66 ± 7	66 ± 8	NS
LV longitudinal strain, %	16.7 ± 2.6	16.0 \pm 2.6	14.8 ± 2.7*	13.6 ± 4.3*†	0.002
LA area index, cm/m ²	12.4 ± 4.0	11 .9 ± 3.0	13.4 ± 3.0	13.0 ± 3.0	NS
BNP, pg/ml	34 ± 5	67 ± 10	11 0 ± 14 *†	95 ± 1 8*	<0.0001
Risk score	12.2 ± 2.0	15.1 ± 2.0*	16.5 ± 2.0*	14.9 ± 2.0*	<0.0001

Asymptomatic Paradoxical LF/LG Severe AS

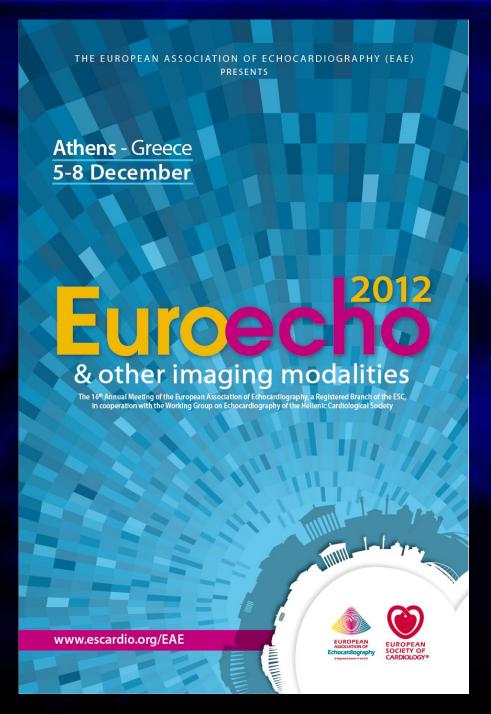
Key Messages

- ☐ The presence of a moderately increased transvalvular gradient (<40 mmHg) does not exclude the presence of a severe AS, even in patients with preserved LVEF
- ☐ DSE is very useful for the management of LF/LG AS
- ☐ Paradoxical LF/LG entity is found in 5-15% of AS patients and is often associated with more advanced stage of the disease and worse prognosis, even in asymptomatic patients
- ☐ It is important to recognize this entity so we do not deny surgery to a symptomatic patient with small AVA and I.C.

Thank you for your attention.

Fonds Léon Frederica

"In these matters the only certainty is that nothing is certain."


Pliny The Elder, 23 AD-79 AD

Université de Liège

DON'T MISS

5-8 December 2012 MAICC – Athens, Greece

Abstract submission deadline 31 May

Early bird registration 30 September

Thank you for your attention.

Fonds Léon Frederica

"In these matters the only certainty is that nothing is certain."

Pliny The Elder, 23 AD-79 AD

Université de Liège

