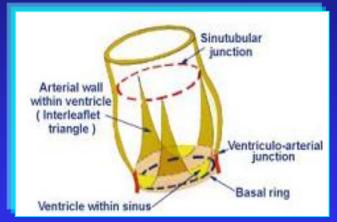

Jaroslaw D. Kasprzak, FESC, FACC

Aortic valve: evaluation using 4-D echocardiography

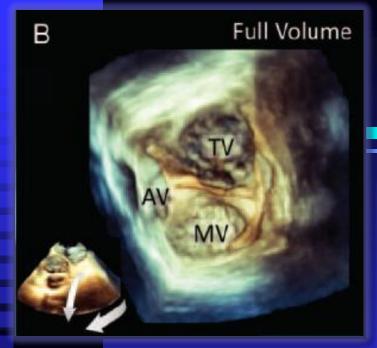
2nd Chair and Dept. of Cardiology Medical University of Łódź, Poland

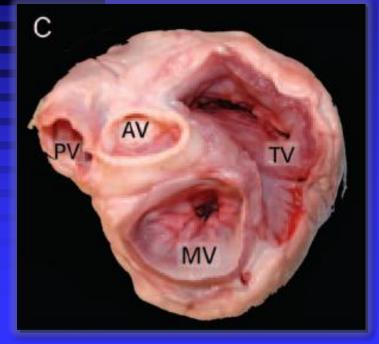
Aortic valve

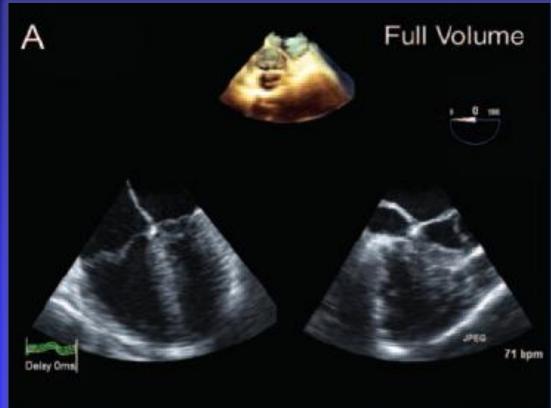

- Anatomically simple structure; rapid motion!
- Low echogenicity of normal valve
- Fibrosis improves 3-D presentation
- Calcification worsens 3-D presentation
- TEE provides optimal quality
 - > 59% excellent, 22% adequate
- ❖3d TTE is improving!

Aortic valve

- Anatomically simple structure?
- Now considered a functional unit comprising the:
 - > aortic annulus
 - > cusps
 - sinuses of Valsalva
 - commissures
 - tubular junction

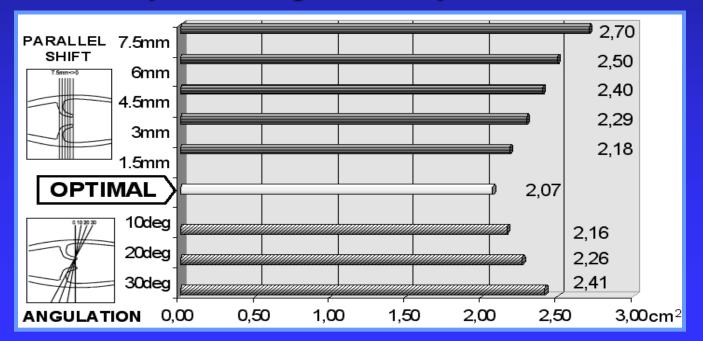

Anderson RH, Heart 2000


- Rapid motion during cardiac cycle!
- Low echogenicity of normal valve
 - > Fibrosis improves 3-D quality
 - Calcification worsens 3-D quality


Aortic valve – RT 3D imaging

- Parasternal window
 - ➤ From AV cusps number and orifice
 - ➤ From LVOT vegetations, prolapse, SAS
- ❖Apical window LVOT
 - ➤ Worse resolution, use when no other available
 - ➤ Long axis view motion
- Anyplane/paraplane
 - ➤ Measurements, eg. area or LVOT planimetry
- Volume rendering
 - > 3-D relationships and anatomy; planimetry?

AV 3D


3D of aortic valve - expectations

- ❖ Definitive anatomical characterization (number of cusps)
- **❖**Better localization of pathoanatomy
- Planimetry of aortic valve orifice
 - > Improved interobserver variability vs TEE
- Additional information on prosthetic valves (disc mobility) with overall poorer quality
- *Additional relevant information in 31% of studies (TEE, Eur Heart J Kasprzak 1996)

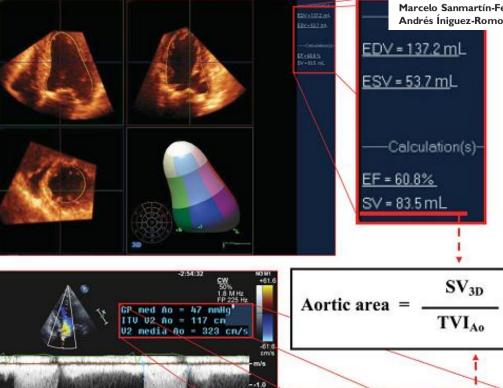
Aortic valve planimetry

- excellent agreement vs Gorlin area values (Menzel et al.) as well as TEE planimetry and continuity equation (Kasprzak et al.)
- feasibility of TEE planimetry 88% 96%

GP med Ao = 47 mmHg

ITU U2 Ao = 117 cm

U2 media Ao = 323 cm/s


Aortic area (cm²) =
$$\frac{SV_{3D (cm^3)}}{TVI_{Ao (cm)}}$$

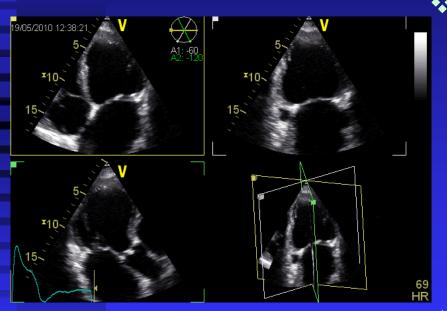
SV_{3D}: stroke volume by 3D

TVIA0: time-velocity integral by Doppler in the aortic valve

Real-time three-dimensional echocardiography in aortic stenosis: a novel, simple, and reliable method to improve accuracy in area calculation

Juan Luis Gutiérrez-Chico¹*, José Luis Zamorano², Elsa Prieto-Moriche², Rosa Ana Hernández-Antolín², Marisol Bravo-Amaro¹, Leopoldo Pérez de Isla², Marcelo Sanmartín-Fernández¹, José Antonio Baz-Alonso¹, and Andrés Íniguez-Romo¹

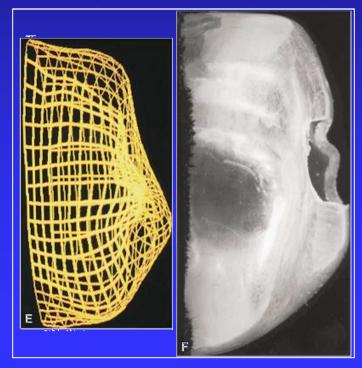
--2.0

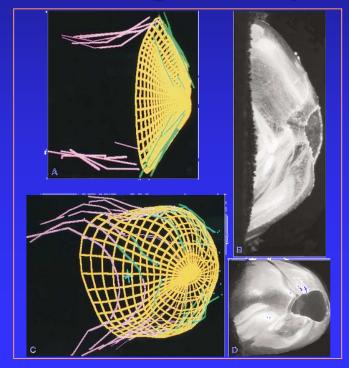

--3.0

--4.0 ---5.0

100 mm/s

Prosthetic valves - continutiy equation / triplane




- ❖ Alunni G, Echocardiography 2011
- ❖ EOA of prosthetic aortic valves were measured in 23 consecutive patients requiring periodical follow up. EOA was calculated using Doppler continuity equation (DCE) and the RT3P method by replacing Doppler-derived SV with SV measured with real time triplane echocardiography.
- ❖ RT3P revealed an inverse correlation between functional area and mean gradient that was better than DCE (P = 0.0359).

3D valve shape determines EOA

❖Domed valves (E,F) cause 14% and 40% less gradient as compared to intermediate (C,D) or flat (A,B) valves, respectively



Aortic regurgitation

- direct visualization of regurgitant jet easy, but imaging of AV orifice rarely possible
- 3-D color regurgitant jets can be analyzed
 - direct VC width / PISA volume > jet volume
- ❖ Orifice flow correlation
- functional analysis of excentric jets

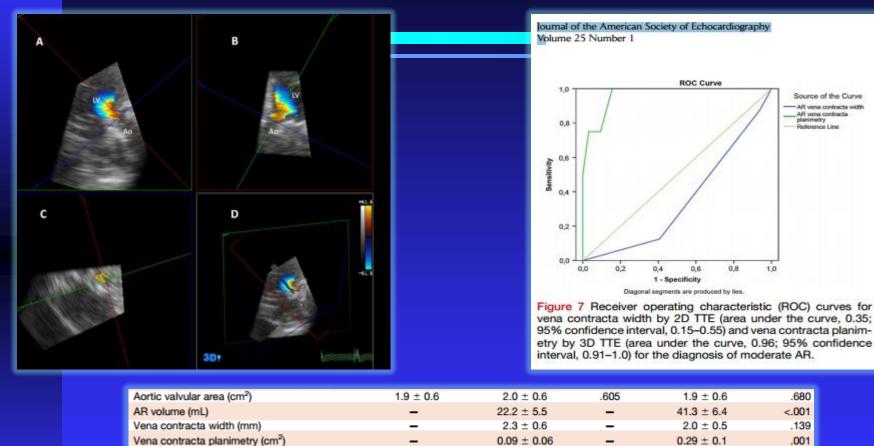
3-D vena contracta in AR

- ❖ 56 consecutive adult patients who underwent echo for evaluation of aortic insufficiency.
- Aortographic or surgical grading
 - > correlated well with 2D TTE measurements of VCW (r=0.92)
 - ➤ and, better with 3D TTE measurements of VCA (r=0.95),
 - ➤ with improved dispersion between angiographic grades demonstrated by the 3D TTE technique.
- Live 3D TTE color Doppler measurements of VCA are comparable to assessment by aortography.

AR quantfication

- ❖ 32 consecutive patients AR assessed with 3DCDE and their results were compared with those obtained by means of CMR.
- ❖ Mean age was 63.0±13.5 years. Compared with the traditional echo-Doppler methods, 3DCDE evaluation had the best linear association with CMR results (3D vena contracta cross sectional area method: r=0.88; r square=0.77; p<0.001. 3D vena contracta cross sectional area/left ventricular outflow tract cross sectional area method: r=0.87; r square=0.75; p<0.001).</p>
- The ROC analysis for detection of severe CAR (3D vena contracta cross sectional area method=0.97; 3D vena contracta cross sectional area/left ventricular outflow tract cross sectional area method=0.98).
- * variability for the 3DCDE evaluation was good (ICC=0.89 and ICC=0.91 for inter and intra observer variability respectively).

Aortic valve – complex morphology


Endocarditis

- > vegetations
- > destruction
- > abscesses
- **❖**Tumors
- Prosthetic valves
- Anatomical relationships
- Mobility
- *Size

Paravalvular leaks

- vena contracta planimetry was larger in patients with moderate AR than in mild AR (0.30 6 0.12 vs 0.09 6 0.07 cm2, P = .001).
- Vena contracta planimetry on 3D TTE was better correlated with AR volume than on 2D TTE (Kendall's t = 0.82 [P < .001] vs 0.66 [P < .001]).
- The AOC were 0.96 for VC planimetry and 0.35 for VCW Goncalves JASE 2012

TAVI and RT3D

- Bicuspidity
- Sizing
- Monitoring
 - Positioning
 - > Complications:
 - Prosthesis displacement
 - Prosthesis instability
 - Aortic regurgitation
 - > Trauma

GUIDELINES AND STANDARDS

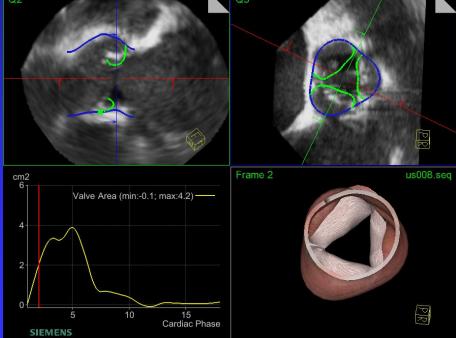
EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography

Roberto M. Lang, MD, FASE,* Luigi P. Badano, MD, FESC,† Wendy Tsang, MD, * David H. Adams, MD, * Eustachio Agricola, MD,† Thomas Buck, MD, FESC,† Francesco F. Faletra, MD,† Andreas Franke, MD, FESC,† Judy Hung, MD, FASE,* Leopoldo Pérez de Isla, MD, PhD, FESC,† Otto Kamp, MD, PhD, FESC,† Jaroslaw D. Kasprzak, MD, FESC,† Patrizio Lancellotti, MD, PhD, FESC,† Thomas H. Marwick, MBBS, PhD,* Marti L. McCulloch, RDCS, FASE,* Mark J. Monaghan, PhD, FESC,† Petros Nihoyannopoulos, MD, FESC,† Natesa G. Pandian, MD,* Patricia A. Pellikka, MD, FASE,* Mauro Pepi, MD, FESC,† David A. Roberson, MD, FASE,* Stanton K. Shernan, MD, FASE,* Girish S. Shirali, MBBS, FASE,* Lissa Sugeng, MD,* Folkert J. Ten Cate, MD,† Mani A. Vannan, MBBS, FASE,* Jose Luis Zamorano, MD, FESC, FASE,† and William A. Zoghbi, MD, FASE*, Chicago and Oak Lawn, Illinois; Padua and Milan, Italy; New York, New York; Essen and Hannover, Germany; Lugano, Switzerland; Boston, Massachusetts; Madrid, Spain; Amsterdam and Rotterdam, The Netherlands; Lodz, Poland; Liege, Belgium; Cleveland, Ohio; Houston, Texas; London, United Kingdom; Rochester, Minnesota; Charleston, South Carolina;

New Haven, Connecticut; Morrisville, North Carolina

(J Am Soc Echocardiogr 2012;25:3-46.)

Recommended Promising Areas of
for Clinical Clinical Active
Practice Studies Research Unstudied


Aortic Valve Assessment				
Anatomy		✓		
Stenosis		✓		
Regurgitation				1
Infective Endocarditis				1
Prosthetic Valves			1	
Guidance of Transcatheter Procedures*	1			

^{*} mitral clips, mitral valvuloplasty, transcatheter aortic valve implantation, paravalvular leak closure, atrial septal defect closure, ventricular septal defect closure and left atrial appendage closure.

AV assessment of the future?

- ❖ Automated detection and extraction of AV complex from 3-D datasets,
- integration with 3-D flow data and shape quantification

Szczecin 2012

