

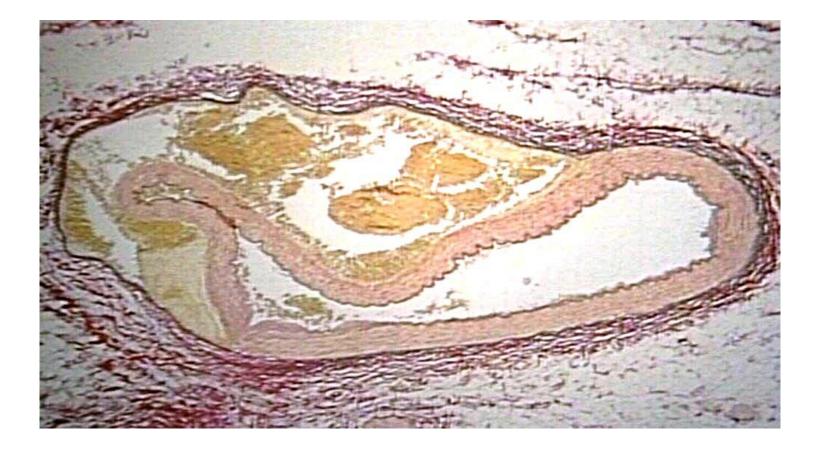
Drug-Eluting Balloons

Klaus Bonaventura Department of Cardiology and Angiology Heart Thorax Vascular Center, Klinikum Ernst von Bergmann, Potsdam

Speaker's name: Klaus Bonaventura

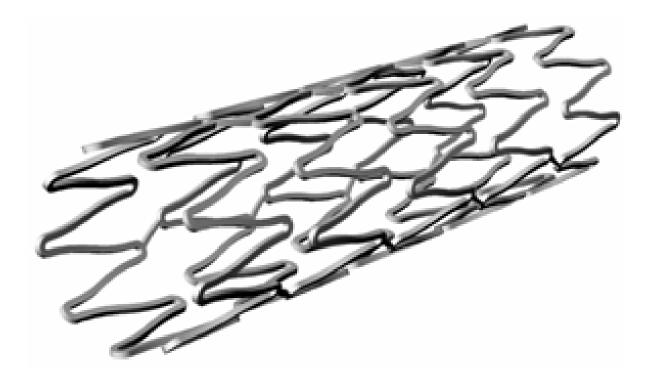
☑ I have the following potential conflicts of interest to report:

- □ Grant/Research Support
- Consulting Fees/Honoraria: B. Braun, Boehringer, B. Braun, Bristol-Myers Squibb, Lilly, Medtronic, Pfizer, Sanofi Aventis
- □ Major Stock Shareholder/Equity
- □ Royalty Income
- Ownership/Founder: Personal MedSystems
- □ Intellectual Property Rights
- Other Financial Benefit


ERNSTVON

BERGMANN

KLINIKUM


Intimal dissection following balloon angioplasty

Bare Metal Stent

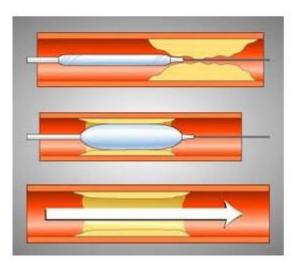
➡ 4 weeks

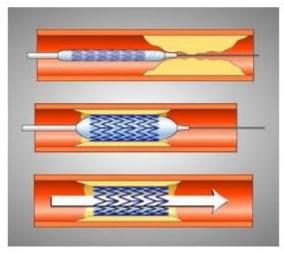
Restenosis after Bare Metal Stenting

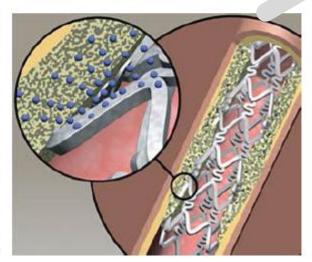
1977

1. Balloon (PTCA): Andreas Gruntzig performs

the first PTCA in Zurich, Switzerland


1988


2. Bare Metal Stent (BMS):


Julio Palmaz and Richard Schatz develop a stainless steel stent for coronary applications

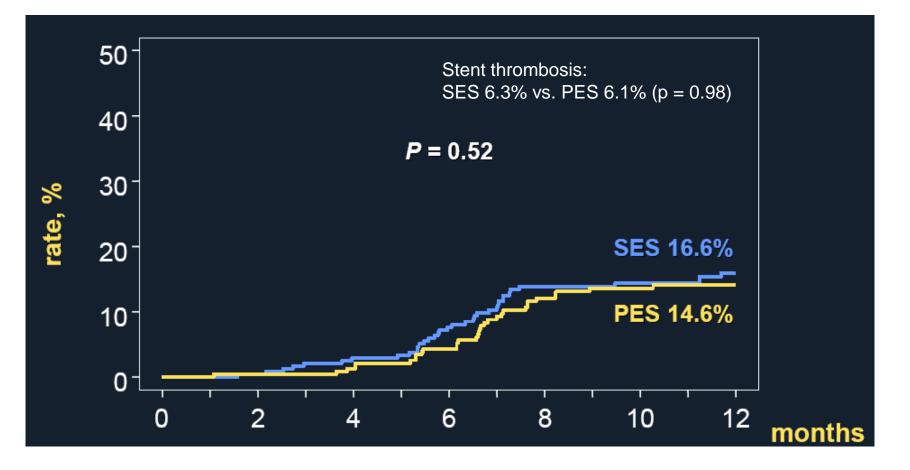
2002 - 2003

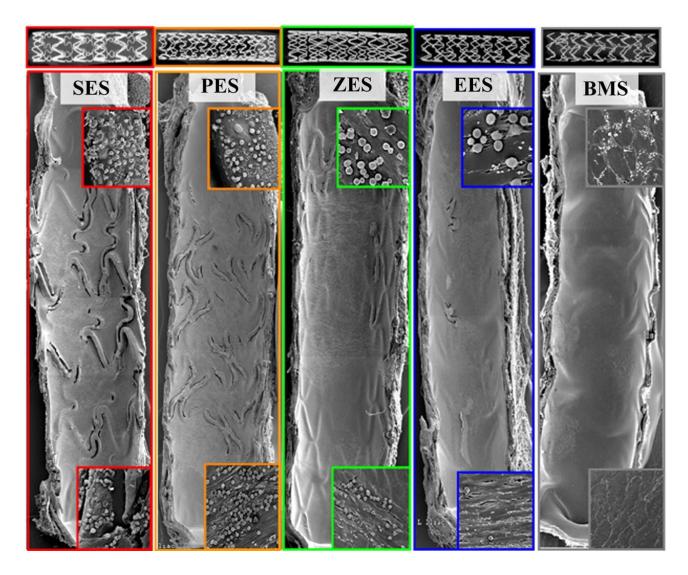
3. Drug-eluting stents (DES): introduced to the European and U.S. markets

Drug-Eluting Stent

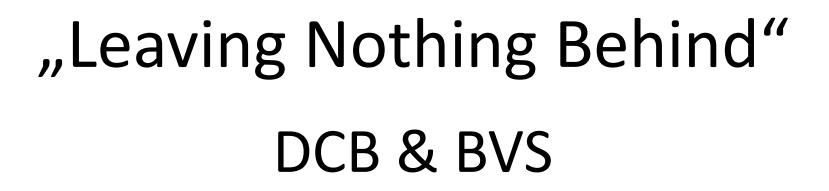
Without Drug Coating

With Drug Coating




⇔ (6-) 12 months

⇒ ISAR-DESIRE 2: TLR



Haemorrhagic risk	Clinical setting	Stent implanted	Anticoagulation regimen
Low or intermediate (e.g. HAS-BLED score	Elective	Bare-metal	<u>I month</u> : triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Lifelong</u> : VKA (INR 2.0–3.0) alone
0–2)	Elective	Drug-eluting	$\begin{array}{l} \underline{3 \ (-olimus^a \ group) \ to \ 6 \ (paclitaxel) \ months:} \ triple \ therapy \ of VKA \ (INR \ 2.0-2.5) \ + \ aspirin \ \leq 100 \ mg/day \ + \ clopidogrel \ 75 \ mg/day \ \underline{Up \ to \ 12th \ months:} \ combination \ of VKA \ (INR \ 2.0-2.5) \ + \ clopidogrel \ 75 \ mg/day^b \ (or \ aspirin \ 100 \ mg/day) \ \underline{Lifelong:} \ VKA \ (INR \ 2.0-3.0) \ alone \end{array}$
	ACS	Bare-metal/ drug-eluting	<u>6 months</u> : triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Up to 12th month</u> : combination of VKA (INR 2.0–2.5) + clopidogrel 75 mg/day ^b (or aspirin 100 mg/day) <u>Lifelong</u> : VKA (INR 2.0–3.0) alone
High (e.g. HAS-BLED score ≥3)	Elective	Bare-metal ^c	<u>2–4 weeks:</u> triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day Lifelong: VKA (INR 2.0–3.0) alone
	ACS	Bare-metal ^c	<u>4 weeks</u> : triple therapy of VKA (INR 2.0–2.5) + aspirin ≤100 mg/day + clopidogrel 75 mg/day <u>Up to 12th month</u> : combination of VKA (INR 2.0–2.5) + clopidogrel 75 mg/day ^b (or aspirin 100 mg/day) <u>Lifelong</u> : VKA (INR 2.0–3.0) alone

□→ Drug-Coated Balloon (DCB) = Drug-Eluting Balloon (DEB)

Drug-Eluting Bioresorbable Vascular Scaffold (BVS) Stent

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Treatment of Coronary In-Stent Restenosis with a Paclitaxel-Coated Balloon Catheter

Bruno Scheller, M.D., Christoph Hehrlein, M.D., Wolfgang Bocksch, M.D., Wolfgang Rutsch, M.D., Dariush Haghi, M.D., Ulrich Dietz, M.D., Michael Böhm, M.D., and Ulrich Speck, Ph.D.

ABSTRACT

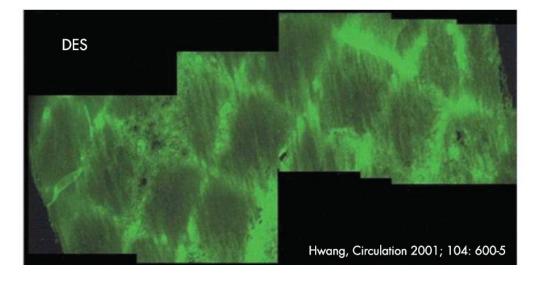
BACKGROUND

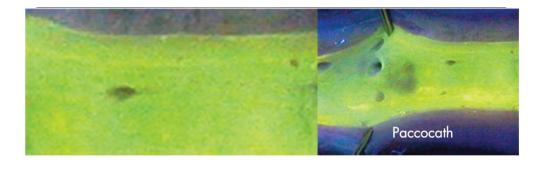
Treatment of coronary in-stent restenosis is hampered by a high incidence of recurrent in-stent restenosis. We assessed the efficacy and safety of a paclitaxel-coated balloon in this setting.

METHODS

We enrolled 52 patients with in-stent restenosis in a randomized, double-blind, multicenter trial to compare the effects of a balloon catheter coated with paclitaxel (3 μ g per square millimeter of balloon surface area) with those of an uncoated balloon catheter in coronary angioplasty. The primary end point was late luminal loss as seen on angiography. Secondary end points included the rates of restenosis (a binary variable) and major adverse cardiac events.

From Universitätsklinikum des Saarlandes, Homburg/Saar (B.S., M.B.); Universitätsklinikum, Freiburg (C.H.); Campus Virchow-Klinikum (W.B.) and Campus Charité Mitte (W.R., U.S.), Universitätsklinikum Charité, Berlin; Universitätsklinikum Mannheim, Ruprecht Karls Universität Heidelberg, Mannheim (D.H.); and Deutsche Klinik für Diagnostik, Wiesbaden (U.D.) — all in Germany. Address reprint requests to Dr. Scheller at the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany, or at bruno. scheller@uniklinikum-saarland.de.


Drug-Coated Balloon (DCB)

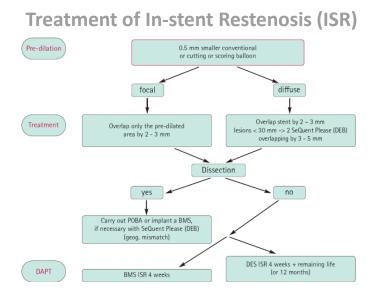

Drug-Coated Balloon (DCB)

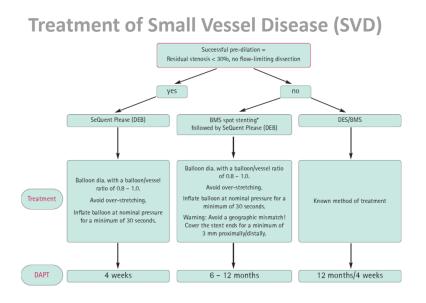
→ Drug-Eluting Stent

- Slow release
- Persistent drug exposure
- \sim 100 200 μg dose
- Polymer
- Stent mandatory

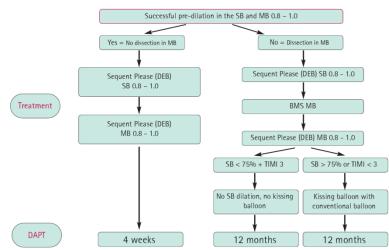
▷ Drug-Coated Balloon

- Immediate release
- Short-lasting exposure
- ~ 300 600 μg dose
- No polymers


Drug-Coated Balloon



In-Stent	Small Vessel
Restenosis	Disease
Bifurcation Lesions	De-Novo Coronary Lesions


Recommendations by the German Consensus Group

Treatment of Bifurcation Stenoses

Drug-Coated Balloon

In-Stent	Small Vessel
Restenosis	Disease
Bifurcation Lesions	De-Novo Coronary Lesions

PACCOCATH ISR I + II

Treatment of Coronary In-Stent Restenosis with a Paclitaxel-Coated Balloon Catheter

- ➡ Efficacy and Safety of Paclitaxel-Coated Balloons in Coronary In-Stent Restenosis
- ➡ Two trials
 - separately randomized
 - double-blind, multicenter
 - identical protocol
 - 108 patients in total
- → Paccocath ISR I: 52 patients
- → Paccocath ISR II: 56 patients

Treatment of Coronary In-Stent Restenosis with a Paclitaxel-Coated Balloon Catheter

Variable Angiographic findings at 6 mo	Uncoated Balloon (N = 26)	Paclitaxel-Coated Balloon (N=26)	Absolute Difference (95% CI)	P Value
No. of patients	23	22		
Minimal luminal diameter — mm	LJ			
In-stent	1.60±0.89	2.31±0.66	-0.71 (-1.18 to 0.24)	0.004
In-segment	1.57±0.86	2.22±0.57	-0.65 (-1.09 to 0.21)	0.005
Late luminal loss — mm				
In-stent	0.76±0.86	0.09±0.49	0.67 (0.24 to 1.09)	0.003
In-segment	0.74±0.86	0.03±0.48	0.70 (0.28 to 1.12)	0.002
Restenosis — no. (%)				
In-stent	10 (43)	1 (5)	0.39 (0.15 to 0.63)	0.002
In-segment	10 (43)	1 (5)	0.39 (0.15 to 0.63)	0.002

	Uncoated Balloon	Drug Coated Balloon	р
n	54	54	
Follow-up	5.2 ± 1.5 yrs	5.6 ± 0.9 yrs	0.108
Death	8 (14.8 %)	5 (9.3 %)	0.556
MI	8 (14.8 %)	5 (9.3 %)	0.556
TLR	21 (38.9 %)	5 (9.3 %)	0.001
Stent thrombosis	0	0	1.000
Stroke	5 (9.3 %)	5 (9.3 %)	1.000
MACE	32 (59.3 %)	15 (27.8 %)	0.002

ERNSTVON

KLINIKUM

PEPCAD II

	Drug-Coated Balloon	Drug-Eluting Stent	Difference (95% CI)	Р
Angiographic follow-up at 6 months				
Angiographic follow-up, n (%)	57 (86.4)	59 (90.8)	-0.04 (-0.15 to 0.05)	0.43
Minimal lumen diameter				
In-stent, mm	2.08±0.56	2.11±0.78	-0.04 (-0.29 to 0.21)	0.77
In-segment, mm	2.03 ± 0.56	1.96 ± 0.82	0.07 (-0.19 to 0.33)	0.60
Diameter stenosis, %	29.4±17.5	34.2±24.3	-4.7 (-12.5 to 3.1)	0.23
Late lumen loss, mm				
In-stent	0.19 ± 0.39	0.45 ± 0.68	-0.26 (-0.47 to -0.06)	0.01
In-segment	0.17±0.42	0.38 ± 0.61	-0.21 (-0.40 to -0.02)	0.03
Late lumen loss index, mm				
In-stent	0.12±0.26	0.28 ± 0.48	-0.16 (-0.30 to -0.02)	0.03
In-segment	0.11±0.29	0.30 ± 0.53	-0.19 (-0.35 to -0.03)	0.02
Binary restenosis rate, n (%)				
In-stent	4 (7)	10 (16.9)	-0.10 (-0.23 to 0.03)	0.17
In-segment	4 (7)	12 (20.3)	-0.13 (-0.27 to 0.01)	0.06

Follow-up rate: 94% (47/50 Lesions, PEB group: 23, BA group: 24)

	Paclitaxel- Eluting Balloon	Conventional Balloon Angioplasty	
Late luminal loss (in-lesion)	0.17 ± 0.45	0.72 ± 0.56	0.001
Late luminal loss (in-segment)	$\textbf{0.18} \pm \textbf{0.45}$	$\textbf{0.72} \pm \textbf{0.55}$	0.001
Binary restenosis	2 (8.7)	15 (62.5)	0.0001
Target lesion revascularization)	1 (4.3)	10 (41.7)	0.003

of Paclitaxel-Eluting Balloon Catheter in Patients with Bare-Metal Stent Restenosis

Clin Res Cardiol DOI 10.1007/s00392-012-0428-2

ORIGINAL PAPER

Cost-effectiveness of paclitaxel-coated balloon angioplasty and paclitaxel-eluting stent implantation for treatment of coronary in-stent restenosis in patients with stable coronary artery disease

Klaus Bonaventura · Alexander W. Leber · Christian Sohns · Mattias Roser · Leif-Hendrik Boldt · Franz X. Kleber · Wilhelm Haverkamp · Marc Dorenkamp

Received: 12 December 2011/Accepted: 8 February 2012 © Springer-Verlag 2012

Bonaventura K et al. Clin Res Cardiol. 2012 Feb 21. [Epub ahead of print]

Bonaventura K et al. Clin Res Cardiol. 2012 Feb 21. [Epub ahead of print]

Cost Effectiveness of Paclitaxel-Eluting Balloon Catheter in Patients with Bare-Metal Stent Restenosis

▷ Initial procedure costs:

- DCB: € 3,604.14

 \square

- DES implantation: € 3,309.66

Over a 12-month time horizon:

- DES implantation: € 5,305.30

- DCB strategy: € 4,130.38

Δ€1,174.92

Δ € 294.48

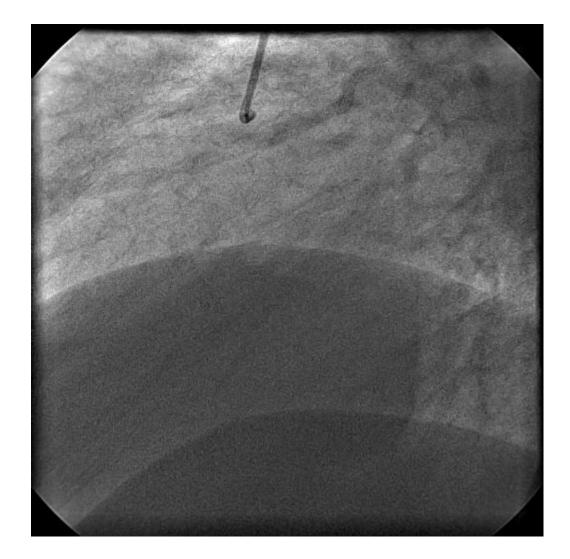
➡ DCB slightly more effective in terms of life expectancy than the DES strategy (0.983 versus 0.976 years).

ESC Guidelines 2010 for In-Stent Restenosis (ISR)

Drug-eluting ball

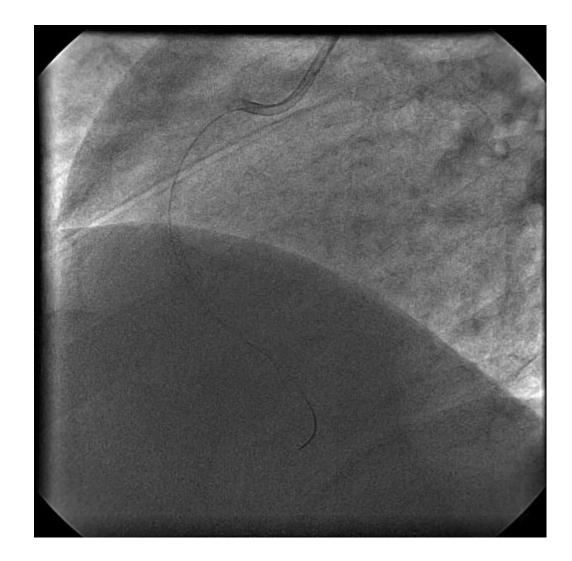
	Class ^a	Level ^b	Ref. ^c
FFR-guided PCI is recommended for detection of ischaemia-related lesion(s) when objective evidence of vessel-related ischaemia is not available.	Т	A	15, 28
DES ^d are recommended for reduction of restenosis/re-occlusion, if no contraindication to extended DAPT.	- I	A	45, 46, 55, 215
Distal embolic protection is recommended during PCI of SVG disease to avoid distal embolization of debris and prevent MI.	1	В	171, 213
Rotablation is recommended for preparation of heavily calcified or severely fibrotic lesions that cannot be crossed by a balloon or adequately dilated before planned stenting.	- I	С	_
Manual catheter thrombus aspiration should be considered during PCI of the culprit lesion in STEMI.	lla	A	204–208
For PCI of unstable lesions, i.v. abciximab should be considered for pharmacological treatment of no-reflow.	lla	B	55, 209, 212
Drug-eluting balloons ^d should be considered for the treatment of in-stent restenosis after prior BMS.	lla	B	174, 175
^d should be considered for the treatment of in-stent restenosis after prior BMS.			I
Tornus catheter may be used for preparation of heavily calcified or severely fibrotic lesions that cannot be crossed by a balloon or adequately dilated before planned stenting.	ПР	с	_
Cutting or scoring balloons may be considered for dilatation of in-stent restenosis, to avoid slipping-induced vessel trauma of adjacent segments.	Ш	с	_
IVUS-guided stent implantation may be considered for unprotected left main PCI.	Шь	С	_
Mesh-based protection may be considered for PCI of highly thrombotic or SVG lesions.	ПР	С	_
For PCI of unstable lesions, intracoronary nitroprusside or other vasodilators may be considered for pharmacological		с	

8

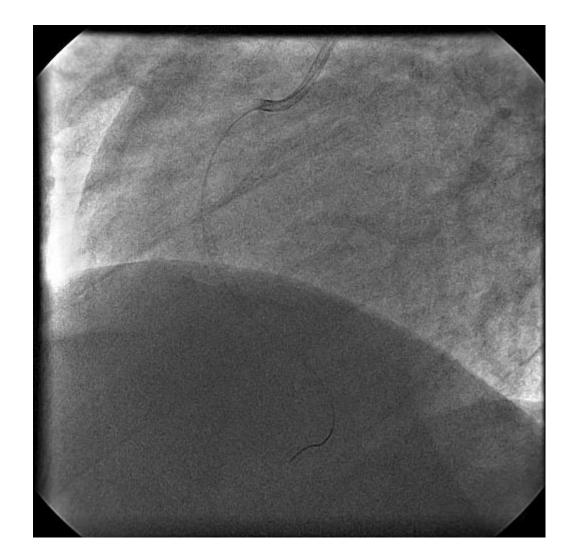


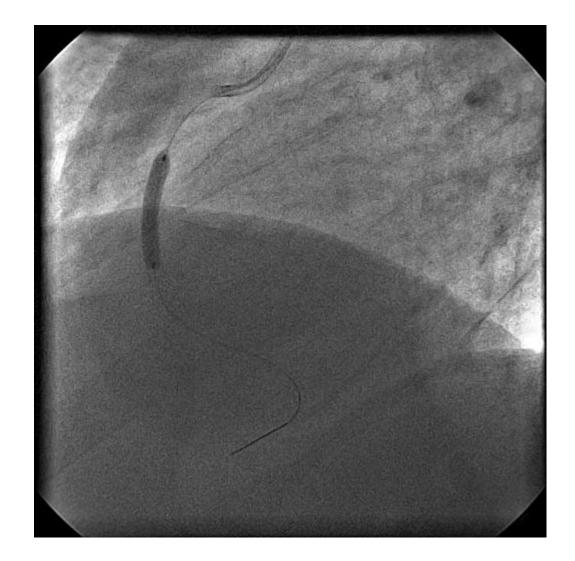
DEB only

- \Rightarrow Male, 55 years
- ➡ PCI of In-stent Restenosis of RCA

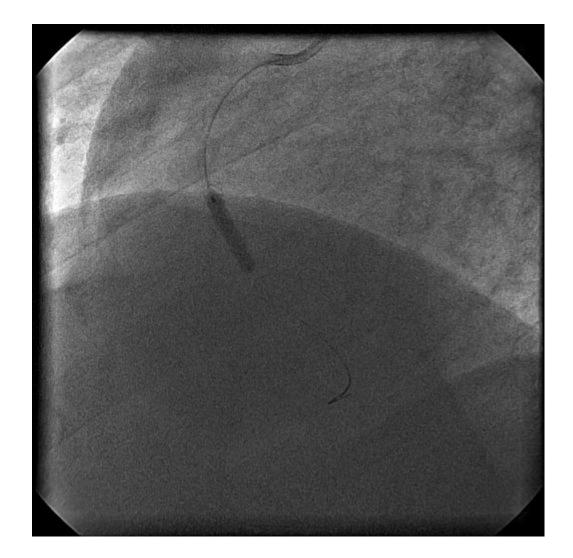

In-stent Restenosis of RCA

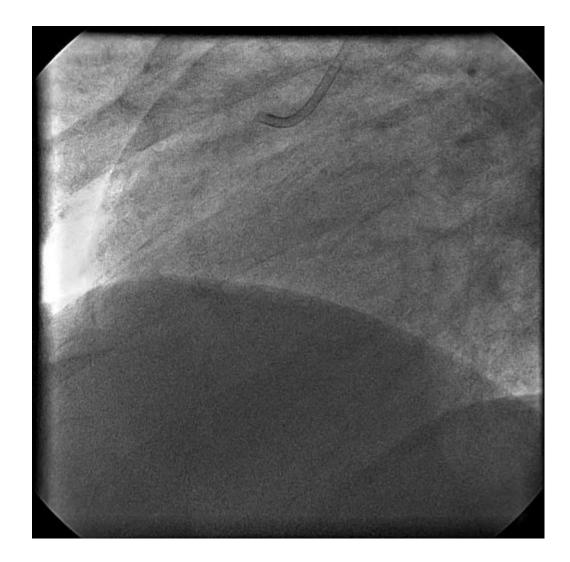
RCA with guidewire

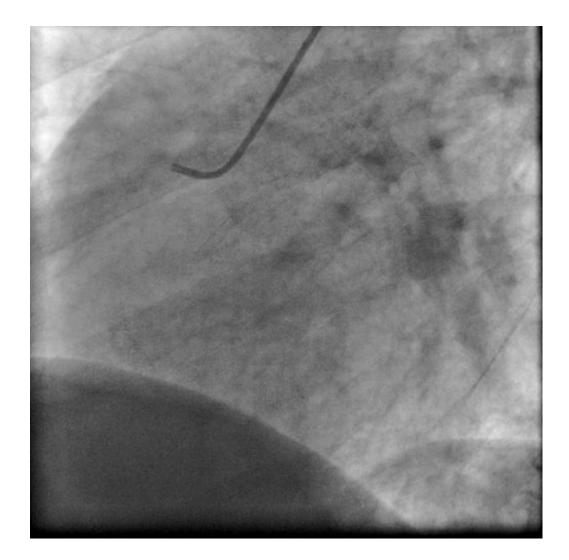




RCA after predilatation







RCA, 4 months after DCB only

Drug-Coated Balloon

In-Stent Restenosis	Small Vessel Disease	
Bifurcation Lesions	De-Novo Coronary Lesions	

- → Prospective, single-arm, observational, multi-center
- □ 118 patients, angiographic follow-up 89 %
- ➡ Paclitaxel eluting balloon Sequent Please in patients with lesions in coronary arteries of 2.25 –2.8 mm in diameter.
- \Rightarrow Endpoint: late lumen loss at 6 months.

PEPCAD I

Treatment of small coronary arteries with a paclitaxel-coated balloon catheter

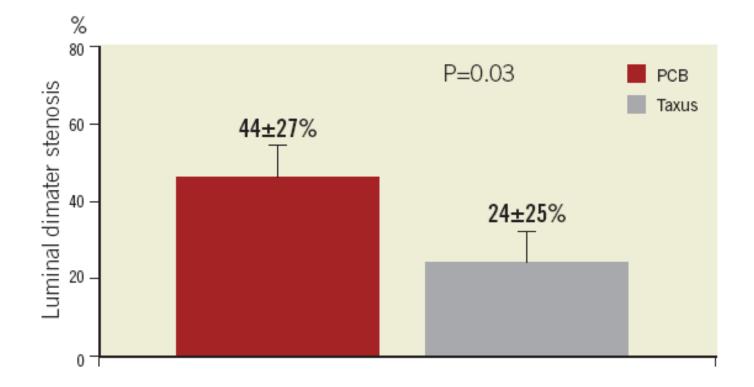
⇒ DEB only: 6 Months Results

Follow-up angiography (82 Patients)			
Late lumen loss In-segment	0.16 ± 0.38 mm		
Binary restenosis rate In-segment	4 (5.5 %)		
Target lesion revascularization	4 (4.9 %)		
Death	0		

Unverdorben M et al. Clin Res Cardiol. 2010 Mar;99(3):165-74.

PEPCAD I

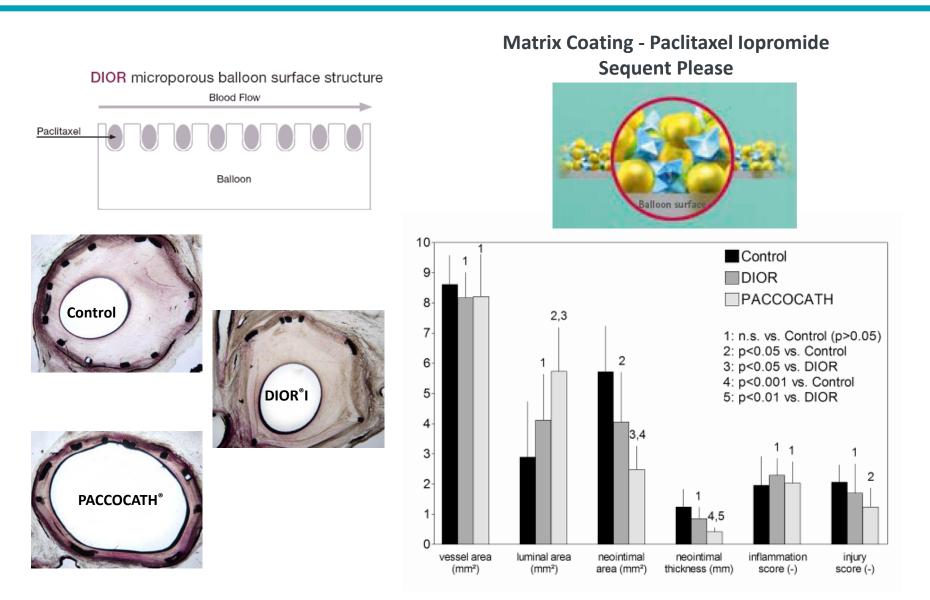
Treatment of small coronary arteries with a paclitaxel-coated balloon catheter


⇒ DEB only: 1-Year MACE Results

	DEB ITT	DEB Only
n	114	82
Stent thrombosis	1.7%	0%
TLR	11.9%	4.9%
Death	2.9%	0%
MI	1.7%	1.3%
MACE	15.3%	6.1%

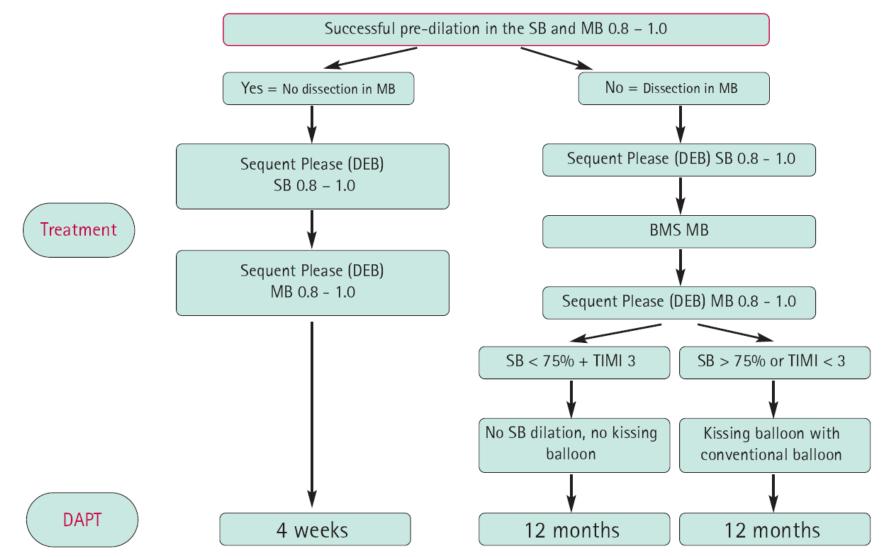
PICCOLETO

Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, BERGMANN a prospective randomized clinical trial


Paclitaxel-coated balloon DIOR[®] vs. Taxus DES in small coronary vessels (≤ 2.75 mm), n=28 + 29 patients

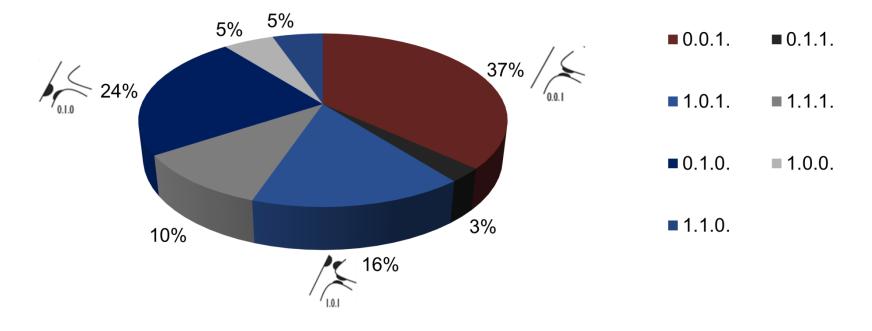
ERNSTVON

Roughened Balloon Surface vs. Matrix Coating


Cremers B et al., Clin Res Cardiol 2009; 98: 325-330

Drug-Coated Balloon

In-Stent	Small Vessel
Restenosis	Disease
Bifurcation Lesions	De-Novo Coronary Lesions



Eurointervention 2011;7:K125-128

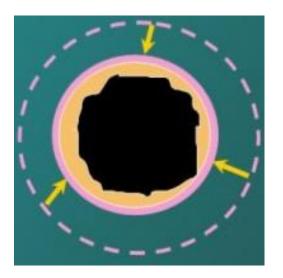
DCB in Bifurcation Lesions: Potsdam Registry

- ⇒ 38 interventions
- \Rightarrow The procedure was successful in all patients.
- Additional stenting of the main branch was needed in 3 (7.9%) interventions.

- So MACE (cardiac death, myocardial infarction, target lesion revascularization) occurred up to 30 days.
- □ Target lesion revascularization at 12 months: 0%
- \Rightarrow Duration of DAPT was 4.2 ± 3.8 months.

Drug-Coated Balloon

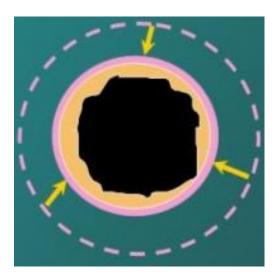
In-Stent Restenosis


Small Vessel Disease

Bifurcation Lesions

De-Novo Coronary Lesions

Recoil & Negative Remodeling



Stenting (BMS, DES)

Drug-Eluting Bioresorbable Vascular Scaffold (BVS) Stent

Recoil & Negative Remodeling

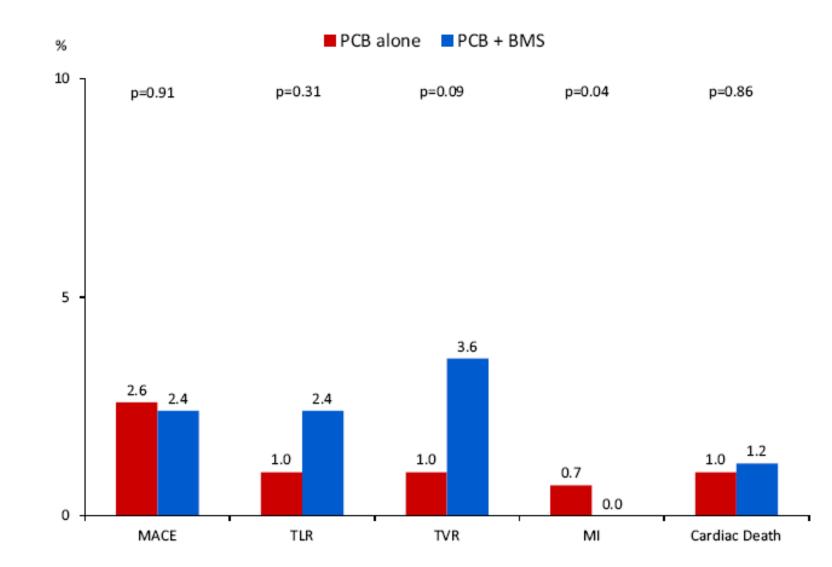
Stenting (BMS, DES)

Drug-Eluting Bioresorbable Vascular Scaffold (BVS) Stent

Neointimal Hyperplasia

Drug-Coated Balloon

(Drug-Eluting Bioresorbable Vascular Scaffold (BVS) Stent)

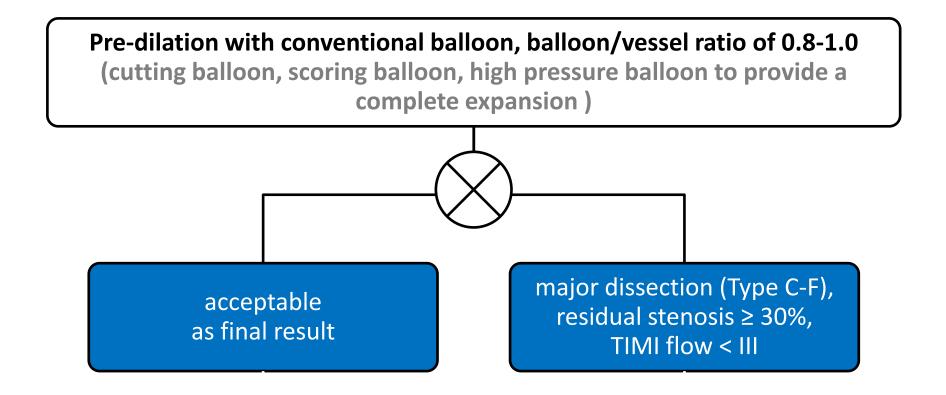

Trial Number of patients	Intervention	Indication	Late lumen loss	Follow-up
PEPCAD I SVD ¹ (n=118)	SeQuent™ Please (n=82) vs. SeQuent™ Please + BMS	De novo, small vessels	0.16 mm	6 months
PEPCAD V ² (n=28)	SeQuent™ Please	De novo, bifurcation (side branch)	0.21 mm	6 months
PICCOLETO ³ (n=60)	Dior™ II (n=29) vs. DES	De novo, small vessels	Not published	6 months
DEBUIT ⁴ (n=117)	Dior™ (n=40) vs. Dior™ + BMS vs. DES	De novo, bifurcation	0.11 mm	9 months
Valentines II^5	Dior™ II	De novo	0.30 (overall)	6-9 months

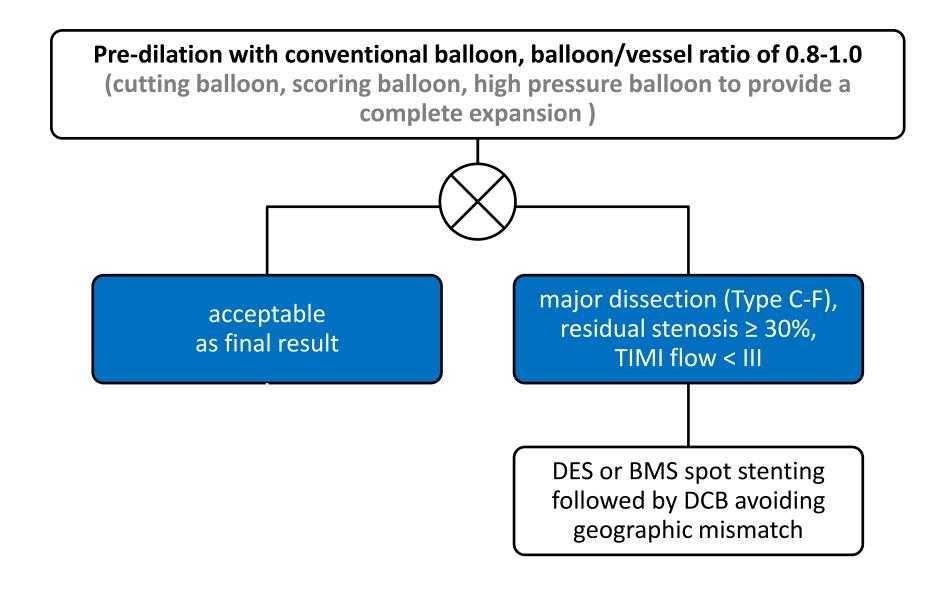
¹Unverdorben M et al. Clin Res Cardiol. 2010 Mar;99(3):165-74. ²Mathey DG; Eurointervention 2011;7:K61-65. ³Cortese B et al. Heart 2010;96:1291-1296. ⁴Stella R, TCT 2010, ⁵Serra CRT 2012.

SeQuent Please World Wide Registry

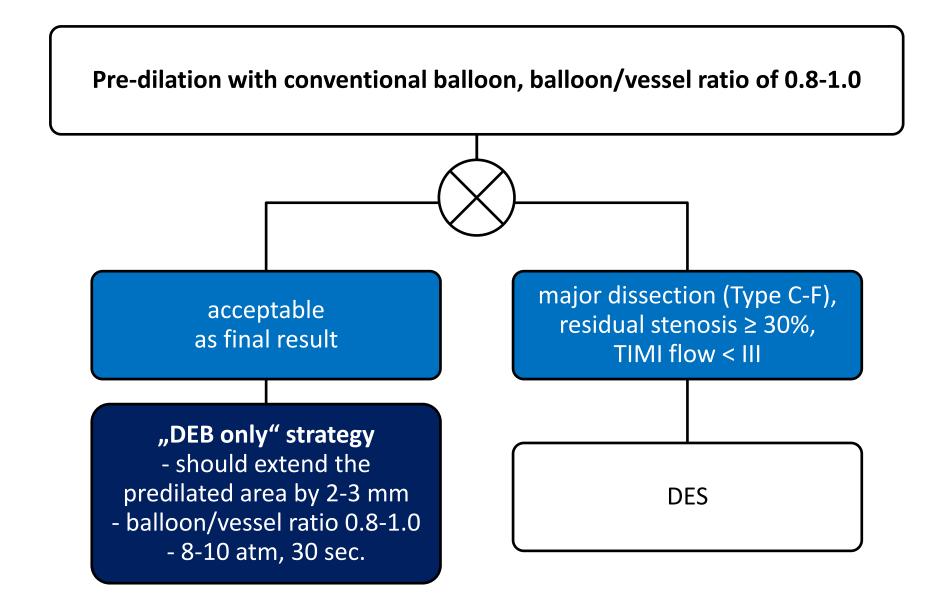
PCB Treatment for De Novo Lesions: Clinical Events

Woehrle J et al. J Am Coll Cardiol. 2012 Oct 30;60(18):1733-8


Acute and late thrombosis after DCB in De-novo Lesions


Trial Number of patients	Intervention	Indication	Duration of DAPT	Acute and late thrombosis at follow-up
PEPCAD I SVD ¹ (n=118)	SeQuent™ Please (n=82) vs. SeQuent™ Please + BMS	De novo, small vessels	1 month	DCB: 0%, DCB + BMS: 6.3%
PEPCAD V ² (n=28)	SeQuent™ Please	De novo, bifurcation (side branch)	3 months	DCB: 0%
PICCOLETO ³ (n=60)	Dior™ II (n=29) vs. DES	De novo, small vessels	1 month in cases of stable angina and lone DEB use, 3 months in cases of DEB and provisional stent implantation	DCB: 0%, DES: 0%
DEBUIT ⁴ (n=117)	Dior™ (n=40) vs. Dior™ + BMS vs. DES	De novo, bifurcation	DEB: 3 months, DEB + BMS: 3 months, DES: 12 months	DCB: 0% DCB + BMS: 0%, DES: 2.5%
Potsdam Heart Center (n=85) ⁵	SeQuent™ Please	De novo	5.4 months	DCB: 0%

¹Unverdorben M et al. Clin Res Cardiol. 2010 Mar;99(3):165-74. ²Mathey DG; Eurointervention 2011;7:K61-65. ³Cortese B et al. Heart 2010;96:1291-1296. ⁴Stella R, TCT 2010. ⁵Bonaventura K, TCT 2012

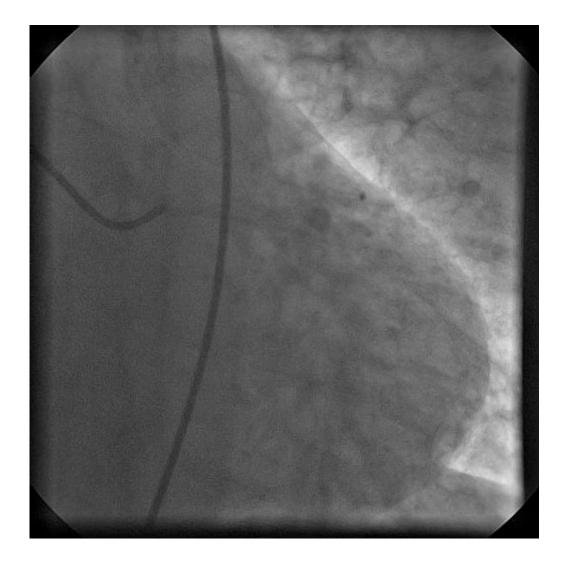


➡ The acute results after DCB only intervention might show haziness, however there is a tendency on improvement with time.

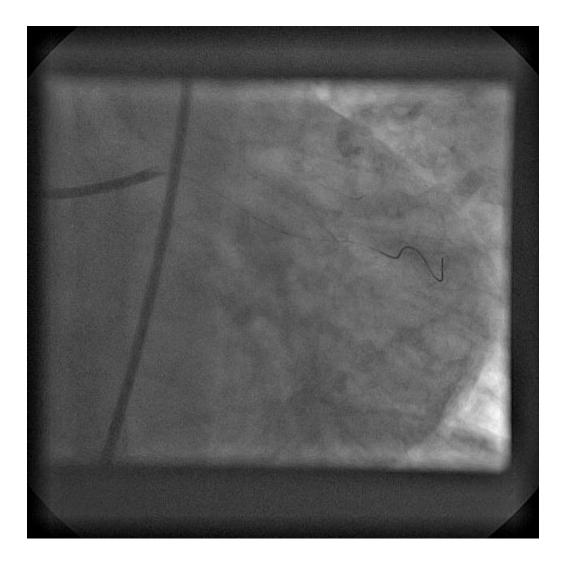
➡ 4 weeks

- ➡ Planned surgery
- ➡ Bleeding event
- → Increased bleeding risk
- Seed for oral anticoagulation / triple therapy
 - Atrial fibrillation
 - Mechanical heart valve
 - Embolism
 - Thrombophilie
 - •••

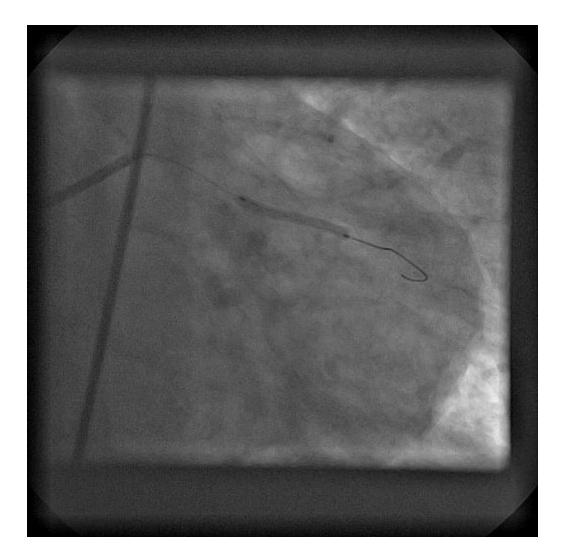
➡ Stentthrombosis

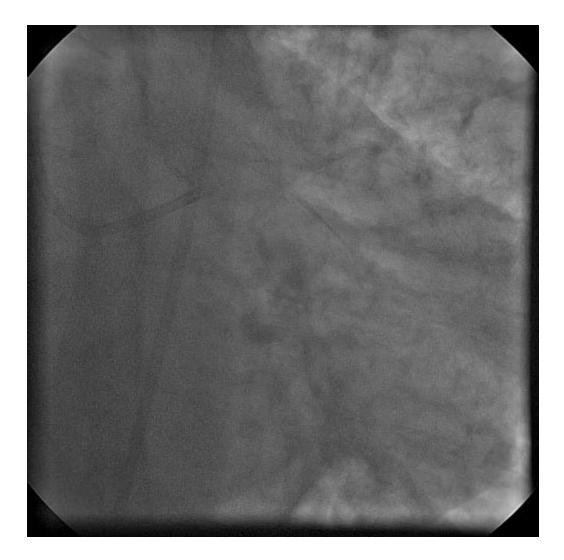


DCB only

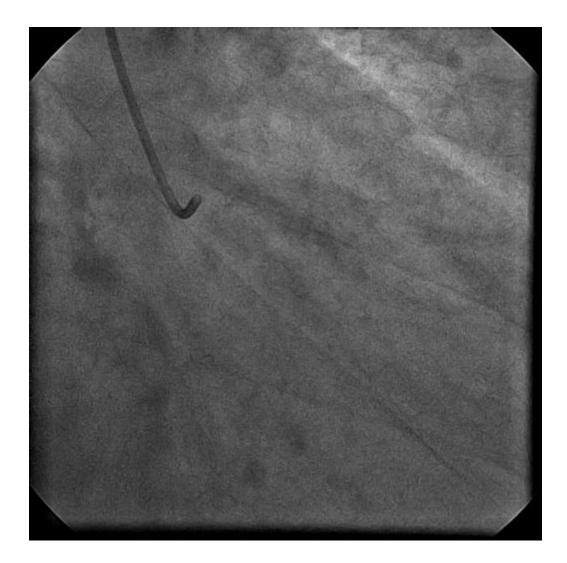

- ⇒ Female, 67 years
- ⇒ Elective intervention of M1CX, positive stress test

RH, M1CX before 2.5/15 mm balloon





RH, M1CX with DCB 2.5/20 mm ^(Sequent Please)



RH, M1CX, 4 months after DCB only

- ⇒ The use of DCB in in-stent restenosis, bifurcation lesions and small vessel disease is established.
- ⇒ Favorable results in de-novo coronary artery disease
- ➡ No class-effect of DCB
- ⇒ DEB only is **not** associated with a higher rate of acute or late **thrombosis**.
- ➡ Localized haziness after DCB angioplasty in de-novo lesions does not increase the risk of acute coronary thrombosis.

- The possible reduction in the duration of DAPT to one month may represent additional advantages regarding safety, patient compliance and costs for the "DCB only" strategy.
- Short period of triple therapy especially in patients with atrial fibrillation and in patients with increased bleeding risk

