

GUIDELINES

Recommendations for chamber quantification*

Roberto M. Lang, Michelle Bierig, Richard B. Devereux, Frank A. Flachskampf*, Elyse Foster, Patricia A. Pellikka, Michael H. Picard, Mary J. Roman, James Seward, Jack Shanewise, Scott Solomon, Kirk T. Spencer, Martin St. John Sutton, William Stewart

In preparation: "focussed update"

Relevant developments for update

- new normative and prognostic data emerging, e.g. left atrial size
- obsolescence of M-mode
- increased and new use for particular measurements, e.g. aortic annulus for TAVI/TAVR, left atrial size for diastolic function and risk assessment
- new technologies: harmonic imaging, simultaneous biplane imaging, 3D imaging, tissue Doppler and strain imaging

Left ventricle

Size:

- 2D-guided measurements preferred over M-mode
- caliper on "interface between cavity and wall" (no "leading edge")
- volumes/EF from biplane mod. Simpson's rule (or, if apex not well imaged, area-length)
- nomograms for BSA, gender, age, race
- no "mild, moderate, severe" abnormality classification (just mean \pm 2SD)
- 3D volumes: not yet

new normal for EF: $63 \pm 5\%$ (53 – 73)

LV Volumes

2-D measurements for LV volume calculations using the biplane method of discs, in the apical four-chamber (A4C) and apical two-chamber (A2C) views at end diastole (LV EDD) and at end-systole (LV ESD).

Ejection fraction = (EDV - ESV)/EDV

WOMEN and MEN

2D method	Reference Range	Mildly Abnormal	Moderately Abnormal	Severely Abnormal
LV diastolic volume/BSA (ml/m²)	35-75	76-86	87-96	≥ 97
LV systolic volume/BSA (ml/m²)	12-30	31-36	37-42	≥ 43
Ejection Fraction (%)	≥ 55	45-54	30-44	< 30

Alternative for LV volume calculation: Area length method V = A * L * 5 / 6

Left ventricle

Global function:

- EF, fractional shortening (in concentric hypertrophy,
- midwall FS recommended)
- Global longitudinal strain (heterogeneous normal values)

Regional function:

- 16 or 18 segment models preferred over 17-segment model
- wall motion score: no extra category for aneurysm
- regional longitudinal strain: (heterogeneous normal values)
- new post-systolic shortening (after aortic valve closure) in ischemic
- heart disease is a sign of ischemia

Left ventricular segmentation: 16/17/18 segments

global (long.) strain -9%

Post-systolic shortening

Right ventricle

The RV dimensions are ... best estimated from a RV-focused apical 4-chamber view....indexing should be considered only at the extremes of BSA. ...a diameter >42 mm at the base ...indicates RV dilatation. Similarly, longitudinal dimension >86 mm indicates RV enlargement.

The "RV focussed" view (LV apex at center, maximal RV diameter)

Overlap in RV size between athletes and ARVC

Furthermore, 28% of the population had values greater than the proposed "major criteria" for ARVC.

Cut off for abnormal dimension according to ASE guidelines

10 -

Athletes (n)

Oxborough JASE 2012;25:263

Cut off for abnormal dimension according to ASE guidelines

Recommended functional RV parameters:

- TAPSE (≥ 17 mm) or
- fractional area shortening ($\geq 35\%$) or
- S' or $(\geq 9.5 \text{ cm/s})$ or
- 3D ejection fraction (≥ 45%)
 (+ estimate of systolic pulmonary pressure)

Aortic root diameter

- where to measure? Sinus Valsalvae, tubular ascending aorta?
- how to measure? leading, trailing edge?
- when to measure? diastole, systole?

Piazza Circ CV Interv 2008;1:74

Messika-Zeitoun JACC 10;55;186

Simultaneous imaging in orthogonal planes ("x-plane")

off-axis images of aortic annulus/valve/root

- look for central valve closure
- •look for Ø perpendicular to LAX
- •from and to cavity/wall interface
- •measure annulus in systole, other aortic diameters in diastole

Left atrial size

"The recommended linear dimension is the LA antero-posterior measurement ...using M-mode or preferably 2D imaging... AP linear dimension should not be used as the sole measure of LA size."

Recommended:

- mod.biplane Simpson rule or area-length
- "single plane LA volumes ...can be used as a simpler tool for measuring the LA volume in the majority of patients

Left atrial size

present upper normal cut-off: $\leq 32 \text{ mL/m}^2$

Table 1. Echocardiographic Determination of LAV in Normal Subjects ($n=124$)					
	Total*	Cutoff†	Ma		
2D LAVImax, ml/m ²	24.1 ± 6.0	36	24.9		

Wu JACCCVImg 2013, epub

Mean LAVi was 32.2 ± 9.0 mL/m² (range = 15.8-69.9 mL/m²) in the pooled population and was larger in athletes than in non-athletes (38.9 ± 9.6 mL/m² vs. 28.4 ± 5.8 mL/m², respectively, P < 0.0001).

Nistri EJE 2011;12:826

final cut-off for LA size will probably be \geq 36 mL/m²

Summary

- 2D measurements preferred; border cavity/blood
- GLS and post-systolic shortening introduced for LV function
- RV focussed view emphasized, overlap in size between cardiomyopathy and athletes
- aortic root: biplane adjustment of 2D planes recommended; \varnothing annulus in systole, other \varnothing in diastole
- left atrial size: cut-off will increase $> 32 \text{ mL/m}^2$
- normal values difficult to provide in new 3D and strain due to vendor dependency

Left Atrial Volume = 8/3π[(A₁)(A₂)/(L)] *

* (L) is the shortest of either the A4C or A2C length

Durchmesser der Aorta Bedeutung der Orientierung der Untersuchungsebene

Mendoza et al. Ann Thorac Surg 2011;92:904-912

