

MULTIPLE VALVE DISEASES

Prof.dr.sc. J. Šeparović Hanževački

School of Medicine, University of Zagreb Department of Cardiovascular Diseases Clinical Hospital Centre Zagreb

General Remarks

- Very limited data
- Large number of potential combinations
- > Each case must be considered individually
- Look for the dominant lesion (LV, RV morphology)
- > Rheumatic, degenerative or sec.
- ➤ 15% pts. undergoing valve surgery in the EuroHeart Survey
- > 8.6% of all valvular surgical interventions

Causes of multivalve heart disease

Acquired						
	Rheumatic heart disease					
	Infective endocarditis					
	Degenerative calcific					
Cardiac diseases	Cardiac remodelling/dilatation (functional)					
	Thoracic/mediastinal radiation therapy					
Adverse effects of treatment	Adverse drug effects (ergot agonist, anorectic agents)					
	End-stage renal disease on haemodialysis					
Non-cardiac systemic diseases	Carcinoid heart disease					
Congenital						
	Marfan syndrome					
Connective tissue disorders	Ehlers-Danlos syndrome					
	Trisomy 18, 13 and 15					
	Ochronosis (alkaptonuria)					
	Shone's anomaly					
Other (rare)	Congenital polyvalvular cardiac disease,					

Simple MVD Mixed single valve

Significant stenosis and regurgitation on the same valve

Mixed single valve

- Look for the dominant lesion
- In dominant regurgitation expect "high" gradients across the valve
- Timing of intervention depends on symptoms or signs of LV dysfunction
- 3D Valve area more accurate than gradients

Use stress
homodynamic
response (SPAP)
to assess
combined effect
of non-severe
lesions

Mixed single valve

AS and MR Functional MR

AS and MR

AS and MR

Figure 1. Crude and adjusted mortality after aortic valve replacement for aortic stenosis (AS) or aortic insufficiency (AI), according to the presence of concomitant functional mitral regurgitation (FMR) ≥2+ at the time of operation.

AS and MR

ESC Guidelines VHD 2007, Unger P *Heart.* 2010

MS + AR

How to evaluate MS

CSA _{MVA} =CSA _{LVOT}XVTI_{LVOT}/ VTI _{MV}

as a semi-quantitative method:

< 130 ms good valve opening 130 ms does not allow any conclusion

Continuity equation

In AR not accurate MVA estimation

PISA method

In AR (or MR) not accurate MVA estimation

3D MVA planimetry is the reference method

MS and AR <u>Doppler ECHO unreliable</u>

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

MS and AR

1990.

MS and AR

3D Valve area may be more accurate!

- Mitral valvotomy might delayed AVR
- When both severe;

MS restricts LV filling blunting the effect of AR on LV volume

- MV Obstruction = low-flow/low-gradient AS
- Physical findings of AS generally dominate
- MS may be overlooked whereas the symptoms are usually those of MS
- Is MV acceptable for balloon valvotomy?

If valvotomy is successful, AV should be re-evaluated

LOW FLOW LOW GRADIENT MS!!

- MV Obstruction = low-flow/low-gradient AS
- Physical findings of AS generally dominate
- MS may be overlooked whereas the symptoms are usually those of MS
- Is MV acceptable for balloon valvotomy?

If valvotomy is successful, AV should be re-evaluated

- Both lesions produce LV dilatation!
- AR

systemic systolic hypertension increase in LV wall thickness

- treat primarily according to dominant lesion
- AVR plus MV repair is the preferred strategy
- <u>Am Coll Cardiol.</u> 2013 Feb 28. pii: S0735-1097(13)00798-5. doi: 10.1016/j.jacc.2013.01.064. Mitral Valve Enlargement in Chronic Aortic Regurgitation as a Compensatory Mechanism to Prevent Functional Mitral Regurgitation in the Dilated Left Ventricle.

Stroke volume and Dilatation

VENTRICULAR DILATATION

INCREASED stroke volume
(valve regurgitation)

or

SAME SV with less contractility
(heart failure)

- Mechanism: 1. Less shortening needed to produce the same stroke volume
 - 2. Wall stress \uparrow with \uparrow diameter / \downarrow with increasing thickness.

With dilatation (and hypertrophy) one can keep stroke volume with less contraction force.

Ventricular function in Volume overload

I normal contractility

and increasing regurgitant

volume:

- dilatation to cope with ↑ SV
- hypertrophy to ↑ strain and thus SV

decreasing contractility:

compensate ↓ strain with ↑

dilatation

Decreased contractility in valve regurgitation = same RV, less deformation and more LV dilatation!

Α

Figure 1. Crude and adjusted mortality after aortic valve replacement for aortic stenosis (AS) or aortic insufficiency (AI), according to the presence of concomitant functional mitral regurgitation (FMR) ≥2+ at the time of operation.

MS and TR

- Diifficult to predict TR after correction of MS
- Improvement in TR if TV anatomy is not distorted
 - severe rheumatic deformity of the TV
 - dilatation of the tricuspid annulus,
 - severe TR,
 - competence is to be restored by surgery
- If MV surgery is performed, concomitant tricuspid annuloplasty should be considered.

MS and TR

Diagnostic caveats in patients with multivalve lesions

		Impacts on the diagnosis of:					
		AS	AR	MR	MS		
The presence of:	AS		Prolonged PHT if left ventricular hypertrophy with impaired relaxation	High intraventricular pressure may result in higher RV whereas ERO is less affected	Low-flow low-gradient MS. Prolonged PHT if impaired left ventricular relaxation		
	AR	Gorlin formula using thermodilution technique invalid. Owing to high transaortic volume flow rate, maximum velocity, and pressure gradients may be higher than expected for a given valve area		Not significantly affected	Owing to increased anterograde aortic flow, there is an overestimation of MVA by the continuity equation. Overestimation of MVA with PHT method. This approach is not valid		
	MR	MR could favour a low-flow, low-gradient state. Aortic valve area calculation remains accurate. High-velocity MR jet may be mistaken for the AS jet (MR is longer in duration)	Not significantly affected		Owing to increased anterograde mitral flow, there is an underestimation of MVA by the continuity equation. MVA may be underestimated with PHT method		
	MS	Low-flow low-gradient state. Aortic valve area calculation remains accurate	Blunted hyperdynamic circulation	Not significantly affected			
	TR	Gorlin formula invalid	Not affected	Not affected	Gorlin formula invalid		

AR, aortic regurgitation; AS, aortic stenosis; ERO, effective regurgitant orifice; MR, mitral regurgitation; MS, mitral stenosis; MVA, mitral valve area; PHT, pressure half-time; RV, regurgitant volume; NA, not applicable.

Conclusion

- > Stenosis = regurgitation
 - inte
- > > Ster
- ➤ Interactung
- Combin loa
- ▶ ! Extra
- Surgica

ESC GUIDELINES MULTIPLE – VD

There is a lack of data on mixed and multiple valve diseases

This does not allow for evidencebased recommendations

presence of the other VHD