MOLECULAR PATHOLOGY OF ATHEROSCLEROSIS

Dubrovnik 2013

Lina Badimon

Barcelona Cardiovascular Research Center (CSIC-ICCC)

IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau

ATHEROSCLEROSIS – ATHEROTHROMBOSIS – CLINICAL EVENTS

CARDIOVASCULAR DISEASE - ATHEROTHROMBOSIS

atherosclerosis

Acute Ischemic Syndromes

Contenders: > Platelets > White cells & RBCs > EPCs > Inflammation > Microparticles

Risk Factors for Plaque Progression and Clinical Complication

Figure 2. Event Rates for Lesions That Were and Those That Were Not Thin-Cap Fibroatheromas, at a Median Follow-up of 3.4 Years.

arcelona

CSIC

Event rates associated with 595 nonculprit lesions that were characterized as thin-cap fibroatheromas (TCFA) and 2114 that were not by means of radiofrequency intravascular ultrasonographic imaging are shown according to minimal luminal area (MLA) and plaque burden (PB) as detected on gray-scale intravascular ultrasonography. The inset shows an example of a thin-cap fibroatheroma imaged by radiofrequency ultrasonography. Data on prevalence are for one or more such lesions per patient. Lesions in patients with indeterminate events were excluded. (For additional details, see Table 6 in the Supplementary Appendix.) CI denotes confidence interval.

Badimon L et al 2008

Barcelona CSIC

Badimon L et al 2008

HIGH RISK PLAQUES AND STRUCTURAL CHALLENGES

Badimon L, Juan O.

Falk E et al

- Unstable plaque
 - Low in collagen
 - Necrotic Core (rich in lipids, inflammatory cells,linfocytes, microcalcifications)
 - Thin fibrous cap (<65um)

Glagov S, N Engl J Med 1987 May 28, 316(22)1371-5

HIGH RISK PLAQUES

lipid core
smooth muscle cells
collagen fibers
inflammatory cells
necrotic core/thin fibrous plaque

structural failure

Badimon L 2011

CSIC

plaque EROSION / DISRUPTION

Infiltrated lipids impair human coronary VSMC repair mechanisms

Padro et al. Cardiovasc Res 2007

Della P

Padró T, Lugano R, García-Arguinzonis M, Badimon L.PLoS One. 2012

Infiltrated lipids impair human coronary VSMC repair mechanisms

García-Arguinzonis M, Llorente-Cortes V, Badimon L. 2008 Padró T, Peña E, Cardiovasc Res.

Proteome of human coronary SMC

Total spots 880 ± 176

Fraccion Tris (16%)
 Fracción Urea-Chaps (48%)
 Both Fractions (36%)

agLDL induce changes in the proteomic profile of myosin regulatory light-chain (MRLC) in SMC

Padró et al. Cardiovasc Res 2008; Padro et al JTH 2010; Lugano et al CVR 2013

Localization of MRLC in VSMC at the migrating front

control

F-Actin (red): Allexa -594 Phalloidin MRLC ; P-MRLC (green): FITC

Padro et al, Cardiovasc Res, 2008

TRANSCRIPTOMICS – HUMAN CORONARY ARTERIES

Severe Plaque

Plaque-IT

PO functions

Angiogenesis in Human Coronary Atherosclerotic Plaques Juan O. & Badimon L. ICCC Database.

THE VASCULAR WALL AND THE ENDOTHELIUM

Lumen

Basal membrane

IEL

Lumen

media

adventitia

Endothelium (vWF)
VSMCs (alfa actin)

FLOW

Faloidin

Modified from Badimon L, 2005

<u>2D- gel electroforesis</u>

PROTEOMICS

INDUCED ENDOTHELIAL CELL CYTOSOLIC PROTEOME

RED, upregulated proteins; GREEN, dowregulated proteins; WHITE, IPA-generated protein SANTA CREU I Color intensity, level of regulation BADIMON L, ALARCON JL, CARDUS A, PADRO T. UNPUBLISHED OBSER

SCSIC

INDUCED ENDOTHELIAL CELL CYTOSOLIC PROTEOME

Badimon L, Alarcon JL, Cardus A, Padro T. Unpublished observations

TOP 16 PROTEINS: IPA-GRAPH-CONNECTIVITY

Symbol	Protein name		
YWHAE	14-3-3 protein epsilon		
EEF1A1	Elongation factor 1-alpha 1		
ACTB	Actin, cytoplasmic 1		
TP53	Cellular tumor antigen p53		
GRB2	Growth factor receptor-bound protein 2		
HDAC1	Histone deacetylase 1		
MTA1	Metastasis-associated protein MTA1		
ACTA1	Actin, alpha skeletal muscle		
HSPD1	60 kDa heat shock protein, mitochondrial		
CAV1	Caveolin-1		
ANXA2	Annexin A2		
APP	Amyloid beta A4 protein		
AR	Androgen receptor		
CDKN2A	Cyclin-dependent kinase inhibitor 2A, isoforms 1/2/3		
SHC1	SHC-transforming protein 1		
EIF2AK2	Interferon-induced, double-stranded RNA-activated protein kinase		
CC			

CSIC

Mean Values in 2D

		Ratio +LDL/ctrl
1	gamma	2,94
2	epsilon	4,30
3	tsheta	0,83
4	teta/ delta	0,93

14-3-3y Proteins

ATHEROSCLEROSIS

- VESSEL REMODELING
- NEOVESSEL FORMATION
- INFLAMMATION
- REGULATORY EFFECTS
 ENDOTHELIAL CELLS

CARDIOVASCULAR RESEARCH CENTER CSIC-ICCC HOSPITAL DE LA SANTA CREU I SANT PAU-UAB, BARCELONA

- **R. ALEDO**
- **G. ARDERIU**
- **M. BALDELLOU**
- **M. BORRELL**
- L. CASANI
- A. CARDUS
- J. CUBEDO
- **R. ESCATE**
- **R. FERRER**
- M. G.-ARGUINZONIS
- **R. HERNANDEZ-VERA**
- O. JUAN
- **V. LLORENTE-CORTES**
- **R. LUGANO**
- **B. MOLINS**
- **B. OÑATE**
- T. PADRO
- E. PEÑA
- I. RAMAIOLA
- **E. SEGALES**
- **R. SUADES**
- M. TOUS
- **G. VILAHUR**

•Dr. Josep Maria Padró Head Cardiac Surgery And Cardiac Transplant Team

•EULALIA STUDY GROUP

