## FFR and Ostial/Bifurcation Lesions

William F. Fearon, MD Associate Professor Stanford University Medical Center



# Why do we need FFR for ostial/bifurcation lesions?

- Angiographic evaluation is difficult due to vessel overlap, angulation, foreshortening, and stent strut artifact
- IVUS/OCT criteria for a significant sidebranch lesion are unknown and it is technically difficult to perform in some cases (particularly after stenting)
- The amount of myocardium supplied by a sidebranch is relatively small and highly variable
- PCI outcomes of ostial/bifurcation lesions are historically poor



#### Even with DES Ostial Lesions have Worse Outcome

TABLE 4. Clinical, Procedural, and Angiographic Multivariate Predictors of In-Segment Restenosis After SES Restenosis\*

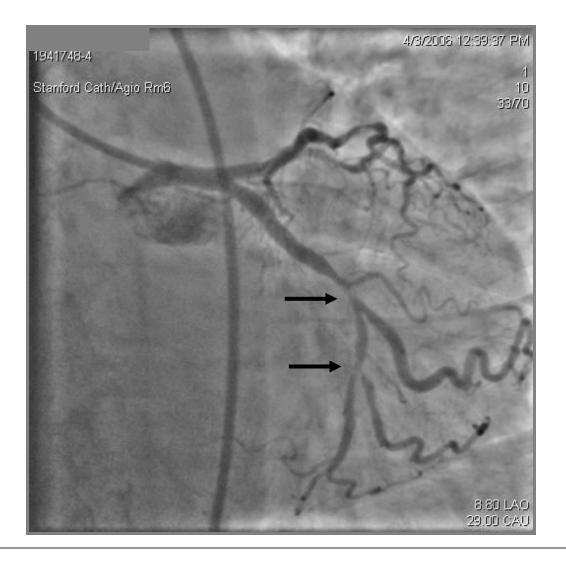
|                                           | OR   | 95% Cl     | Р      |
|-------------------------------------------|------|------------|--------|
| Treatment of in-stent restenosis          | 4.16 | 1.63–11.01 | < 0.01 |
| Ostial location                           | 4.84 | 1.81–12.07 | < 0.01 |
| Diabetes mellitus                         | 2.63 | 1.14–6.31  | 0.02   |
| Total stented length (per 10-mm increase) | 1.42 | 1.21-1.68  | < 0.01 |
| Reference diameter (per 1.0-mm increase)  | 0.46 | 0.24–0.87  | 0.03   |
| Left anterior descending artery           | 0.30 | 0.10-0.69  | < 0.01 |



#### Comparison of Medical Rx and PCI for Ostial Lesions

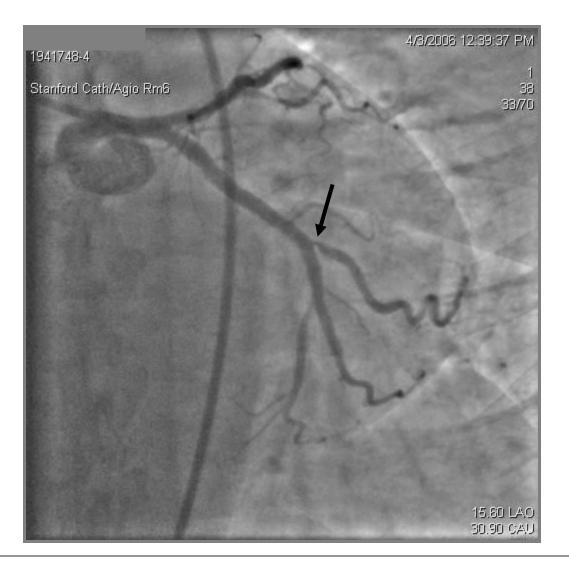
| <b>TABLE 3</b> Type and Distribution of Events in the 2 Groups |                                        |                                     |         |
|----------------------------------------------------------------|----------------------------------------|-------------------------------------|---------|
| Event                                                          | Group I<br>No Angioplasty<br>(n = 233) | Group II<br>Angioplasty<br>(n = 69) | p Value |
| In-hospital events                                             |                                        |                                     |         |
| Acute stent thrombosis                                         | _                                      | 0                                   | _       |
| Acute myocardial infarction                                    | 0                                      | 0                                   | 1.0     |
| Emergent coronary bypass                                       | 0                                      | 0                                   | 1.0     |
| Death                                                          | 0                                      | 0                                   | 1.0     |
| 12-mo follow-up                                                |                                        |                                     |         |
| Rehospitalization for cardiac indication                       | 51 (22%)                               | 38 (55%)                            | < 0.001 |
| Recatheterization                                              | 45 (19%)                               | 32 (46%)                            | < 0.001 |
| PCI or repeat PCI                                              | 19 (8%)                                | 16 (23%)                            | 0.001   |
| Acute myocardial infarction                                    | 9 (4%)                                 | 3 (4%)                              | 0.865   |
| Death                                                          | Ò Í                                    | ò                                   | 1.0     |
| Free of angina                                                 | 130 (56%)                              | 28 (41%)                            | 0.255   |
| Data are presented as numbers of patients (percentages).       |                                        |                                     |         |




#### Comparison of Angiography and FFR in Ostial Lesions



| <b>TABLE 2</b> Ostial Lesions: Angiography Versus Fractional Flow Reserve |                               |                                  |  |
|---------------------------------------------------------------------------|-------------------------------|----------------------------------|--|
| FFR                                                                       | ≥70%<br>Angiographic Stenosis | 50%–70%<br>Angiographic Stenosis |  |
| ≥0.75<br><0.75                                                            | 20<br>5                       | 30<br>0                          |  |
| Sensitivity 100%, specificity 55%, and test accuracy 60%.                 |                               |                                  |  |

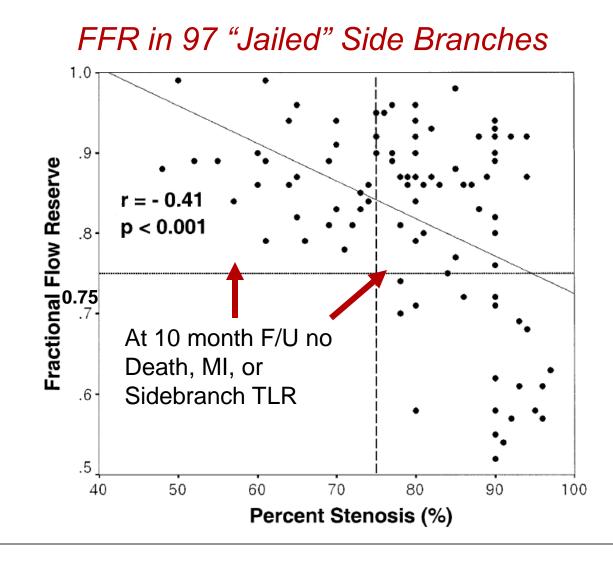



### "Jailed" Side Branches





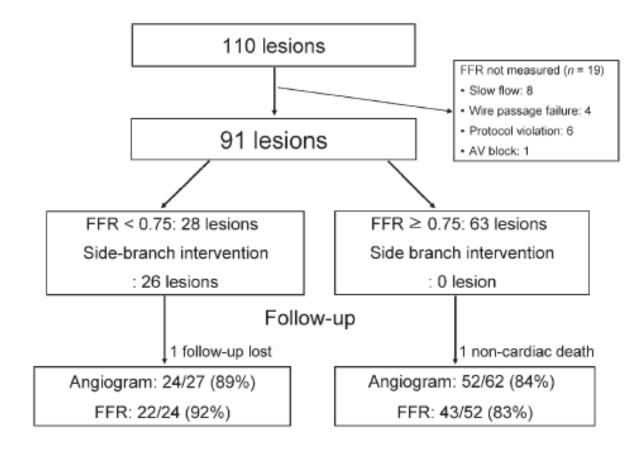
## "Jailed" Side Branches






#### FFR of "Jailed" OM = 0.93










Koo et al. J Am Coll Cardiol 2005;46:633-7.

#### FFR-Guided Bifurcation Strategy in 91 Patients



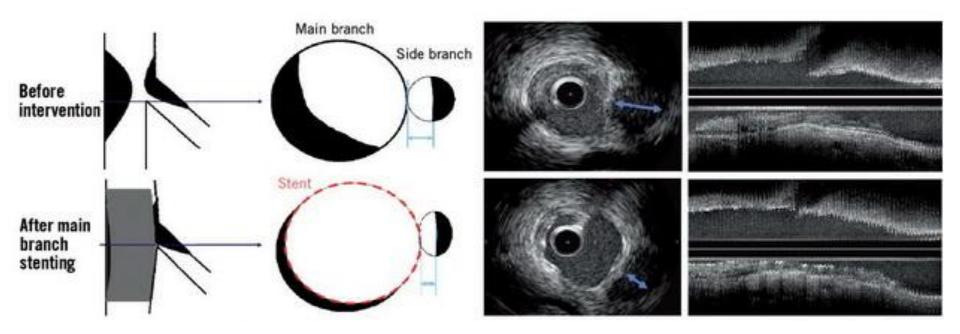
Koo et al. Eur Heart J 2008;29:726-32.

FFR in 91 "Jailed" Side Branches, Repeated at 6 Months

|                    | <b>Post-intervention</b> | Follow-up   | <b>P-value</b> <sup>a</sup> |
|--------------------|--------------------------|-------------|-----------------------------|
| Main branch        | 0.96 ± 0.04              | 0.96 ± 0.04 | 0.9                         |
| Jailed side branch | 0.87 ± 0.06              | 0.87 ± 0.09 | 0.7                         |
| KB group           | 0.86 ± 0.05              | 0.84 ± 0.11 | 0.4                         |
| Non-KB group       | 0.87 ± 0.06              | 0.89 ± 0.07 | 0.1                         |



Koo et al. Eur Heart J 2008;29:726-32.

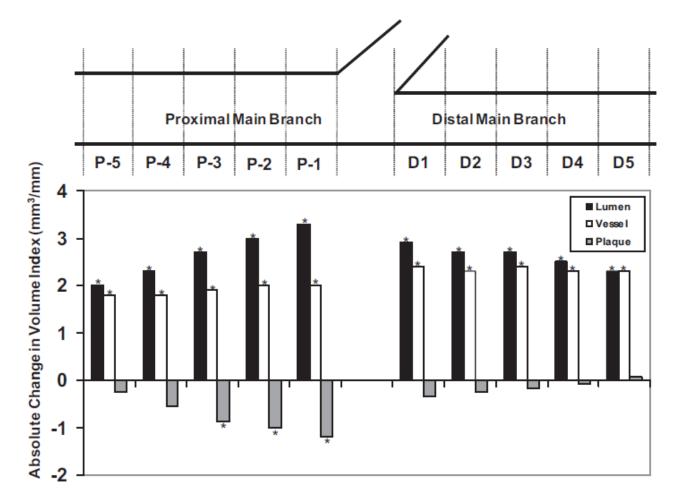

Comparison of FFR-Guided and Conventional Strategies

|                                                  | FFR<br>group,<br>n = 108 <sup>a</sup> | group,  | <i>P</i> -value <sup>c</sup> |
|--------------------------------------------------|---------------------------------------|---------|------------------------------|
| Cardiac death                                    | 0                                     | 0       | 1                            |
| Myocardial infarction                            | 0                                     | 0       | 1                            |
| Target vessel<br>revascularization, <i>n</i> (%) | 5 (4.6)                               | 4 (3.7) | 0.7                          |



## Mechanism of Side Branch "Jailing"

#### **Carina Shifting and Plaque Shifting**






Koo and De Bruyne. Eurointervention 2010;6:J94-J98.

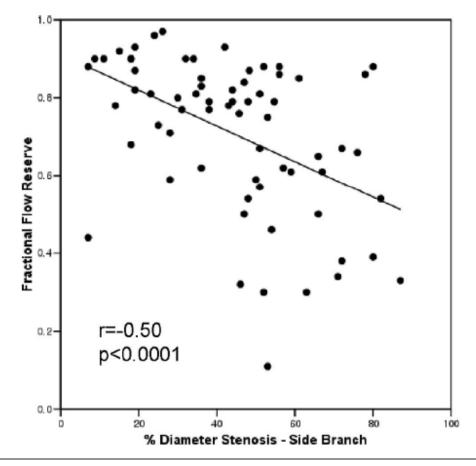
## Mechanism of Side Branch "Jailing"

**Carina Shifting and Plaque Shifting** 





Circ Cardiovasc Intervent 2010;3:113-9.


#### **Pre-Intervention Angiographic Parameters**

| FFR<0.75<br>(N=28) | FFR≥0.75<br>(N=39)                                                              | Р                                                                                                                                                                             |
|--------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                 |                                                                                                                                                                               |
| 3.0±0.6            | $3.0 \pm 0.4$                                                                   | 1                                                                                                                                                                             |
| 1.0±0.4            | 1.2±0.4                                                                         | 0.15                                                                                                                                                                          |
| 65±13              | 61±14                                                                           | 0.27                                                                                                                                                                          |
|                    |                                                                                 |                                                                                                                                                                               |
| $2.1 \pm 0.5$      | 2.2±0.4                                                                         | 0.33                                                                                                                                                                          |
| $0.9 \pm 0.4$      | 1.4±0.4                                                                         | < 0.001                                                                                                                                                                       |
| 54±20              | 37±18                                                                           | < 0.001                                                                                                                                                                       |
| 19 (56)            | <b>15 (44)</b>                                                                  | 0.04                                                                                                                                                                          |
| 44±19              | 46±11                                                                           | 0.62                                                                                                                                                                          |
|                    | (N=28)<br>3.0±0.6<br>1.0±0.4<br>65±13<br>2.1±0.5<br>0.9±0.4<br>54±20<br>19 (56) | $(N=28)$ $(N=39)$ $3.0\pm0.6$ $3.0\pm0.4$ $1.0\pm0.4$ $1.2\pm0.4$ $65\pm13$ $61\pm14$ $2.1\pm0.5$ $2.2\pm0.4$ $0.9\pm0.4$ $1.4\pm0.4$ $54\pm20$ $37\pm18$ $19$ (56) $15$ (44) |

Circ Cardiovasc Intervent 2010;3:113-9.

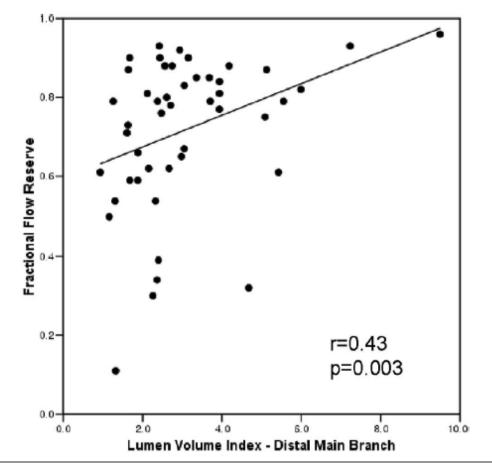


Correlation between Pre PCI Angiographic DS and Post PCI SB FFR





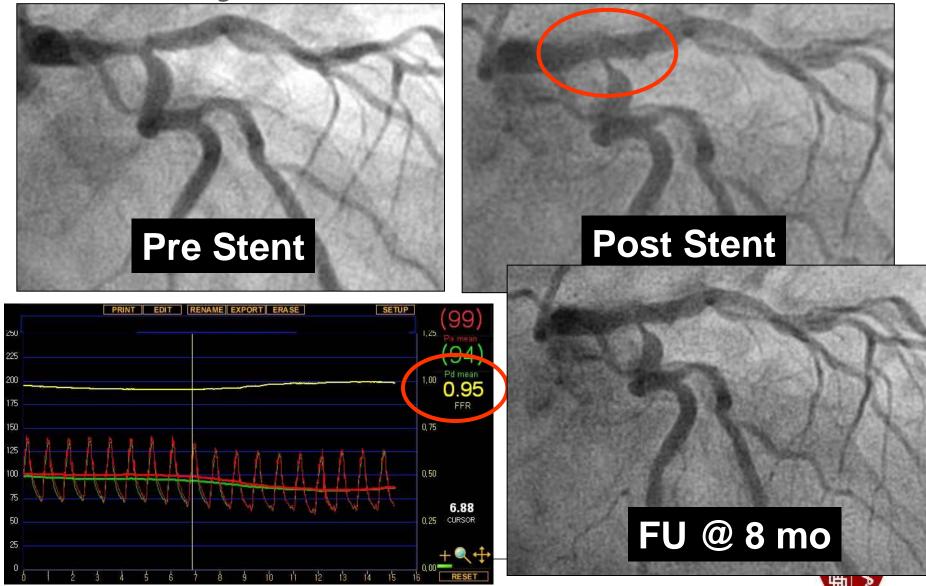
Circ Cardiovasc Intervent 2010;3:113-9.


#### **Pre-Intervention IVUS Parameters**

| MUC peremeters                           | FFR<0.75       | FFR≥0.75 | л     |
|------------------------------------------|----------------|----------|-------|
| IVUS parameters                          | (N=22)         | (N=30)   | Р     |
| Proximal MB                              |                |          |       |
| Lumen volume index, mm <sup>3</sup> /mm  | 2.6±1.1        | 3.4±1.5  | 0.08  |
| Vessel volume index, mm <sup>3</sup> /mm | $13.2 \pm 3.5$ | 12.7±3.5 | 0.67  |
| Plaque volume index, mm <sup>3</sup> /mm | 10.6±3.1       | 9.4±3.1  | 0.21  |
| Plaque burden, %                         | 80±8           | 73±10    | 0.03  |
| Distal MB                                |                |          |       |
| Lumen volume index, mm <sup>3</sup> /mm  | 2.3±1.1        | 3.6±1.8  | 0.01  |
| Vessel volume index, mm <sup>3</sup> /mm | 8.3±2.0        | 9.4±2.7  | 0.14  |
| Plaque volume index, mm <sup>3</sup> /mm | 6.0±1.5        | 5.8±2.0  | 0.69  |
| Plaque burden, %                         | 73±10          | 61±12    | 0.002 |

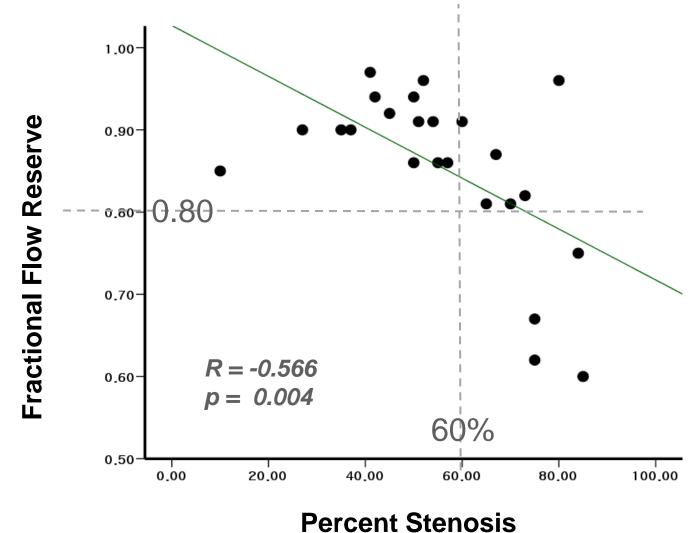
· · · · ·

Circ Cardiovasc Intervent 2010;3:113-9.


Correlation between Pre PCI MB IVUS and Post PCI SB FFR






Circ Cardiovasc Intervent 2010;3:113-9.

### FFR of "jailed" Circumflex



Courtesy of Chang-Wook Nam, MD

## FFR of "jailed" Circumflex





Nam CW, AHA 2008

## FFR of "jailed" Circumflex

|                          | Defer group<br>n = 20 | PCI group<br>n = 4 |
|--------------------------|-----------------------|--------------------|
| Death, n                 | 0                     | 1                  |
| Myocardial Infarction, n | 0                     | 0                  |
| TLR, n                   | 3                     | 1                  |
| Stent Thrombosis, n      | 0                     | 0                  |
| Total Events, n          | 3                     | 2                  |



## **Practical Considerations:**

- Do not "jail" the pressure wire behind a stent
- Remember to consider distal side branch disease or proximal main branch disease when assessing FFR of a sidebranch ostium
- If you are intent on measuring the FFR of a "jailed" side branch, but cannot wire the vessel with a pressure wire, can wire with another wire and exchange over a transit catheter



#### Take Home Messages:

- Angiographic evaluation of ostial/bifurcation lesions overestimates their functional significance.
- Functionally significant "jailing" of side branches is caused by both plaque shift and carina shift.
- Anatomic parameters (angiography/IVUS) cannot predict which side branches are going to become significantly "jailed" after main branch stenting.
- FFR measurement is feasible and safe in ostial and bifurcation lesions, and can help guide the decision regarding the need for PCI

