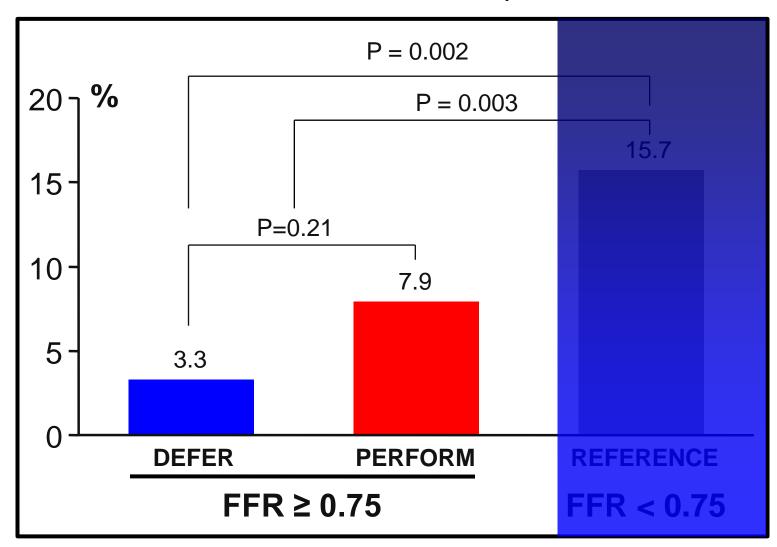
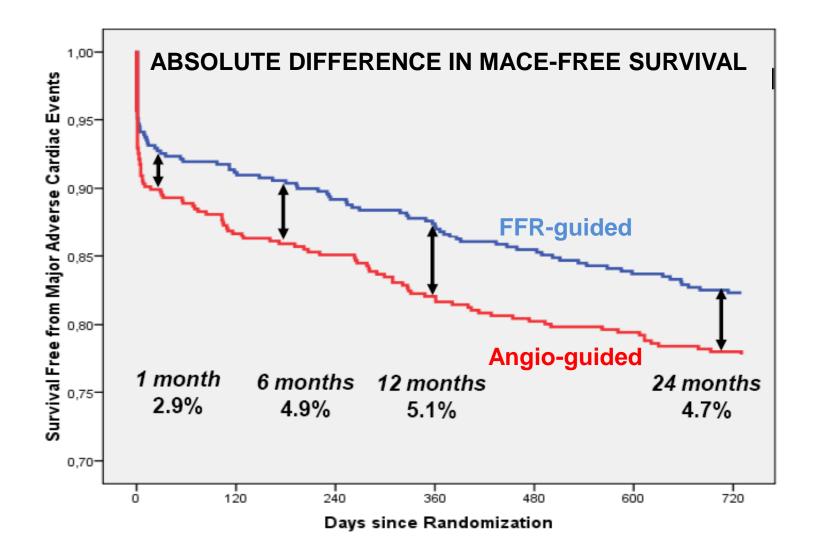


FFR and CABG

Emanuele Barbato, MD, PhD, FESC Cardiovascular Center Aalst, Belgium


Background

 Revascularisation of intermediate stenosis can be targeted EITHER by angiographic guidance OR (with no documented ischemia at non-invasive stress testing) by angiography plus
 FFR≤ 0.80


DEFER: Clinical Outcome at 5 Years

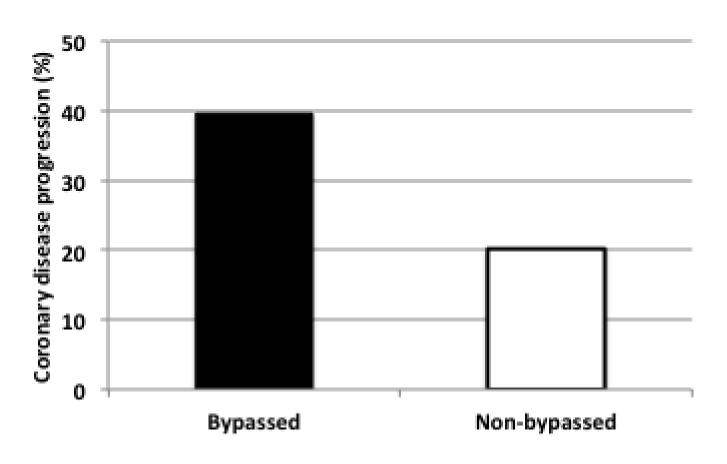
Rate of Death/MI after 5 years

FAME trial

Background

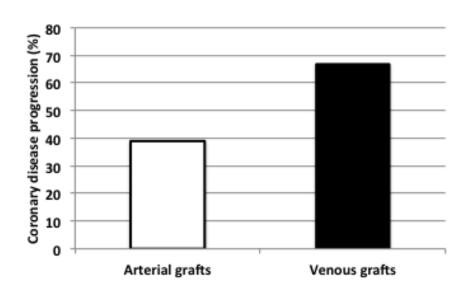
- Revascularisation of intermediate stenosis can be targeted EITHER by angiographic guidance OR (with no documented ischemia at non-invasive stress testing) by angiography plus
 FFR≤ 0.80
- Nevertheless, both DEFER and FAME trials excluded patients with <u>left main</u> coronary disease, <u>previous CABG</u>, <u>coronary anatomy unsuitable for PCI</u>, or <u>significant valve</u> <u>disease</u>

Role of FFR in CABG patients


Before CABG

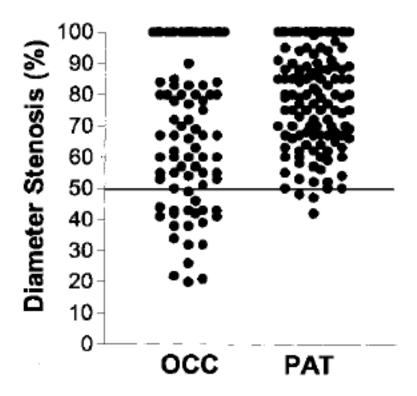
In patients candidate to CABG:

Does it matter an accurate assessment of the stenosis severity?



Coronary disease progression after CABG

Coronary disease progression after CABG

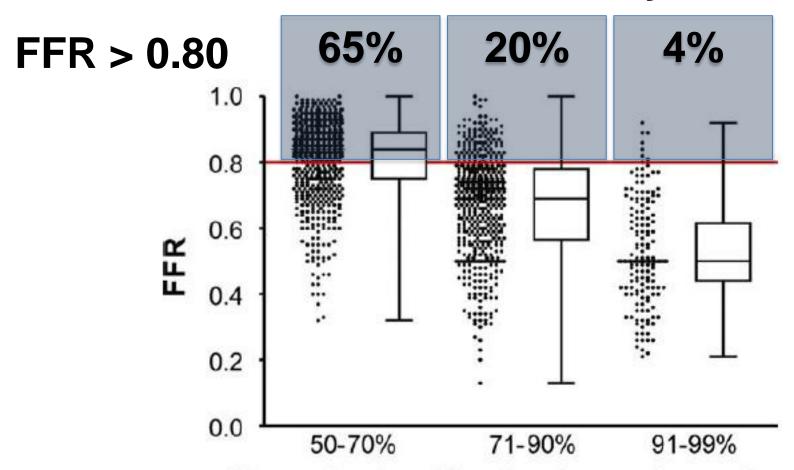


Cosgrove DM, J Thorac Cardiovasc Surg 1981

Manninen HI, Ann Thorac Surg 1998

IMA graft patency and stenosis severity of native vessel

DS < 50% is a strong predictor of IMA occlusion (OR 21.5 [5.2-64.4])

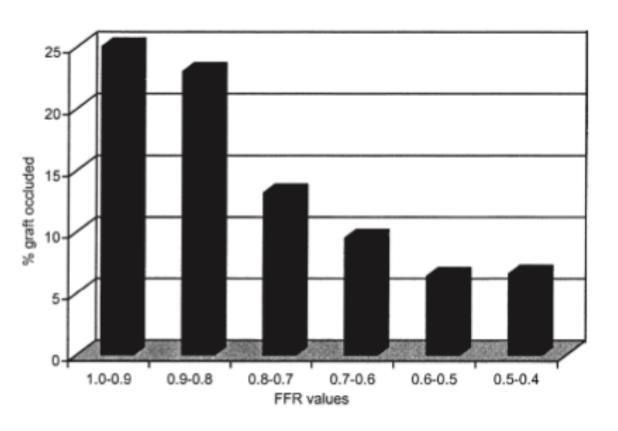

Venous graft patency and stenosis severity of native vessel

Diameter stenosis

Poor correlation between angiographic and functional stenosis severity in MVD

Stenosis classification by angiography

Role of FFR in CABG patients


Before CABG

In patients candidate to CABG:

Is an FFR-guided superior to an Angio-guided strategy?

Functional significance of coronary stenosis and Graft failure

- 164 CABG pts
- Graft failure:
 - 14% arterial
 - 6 venous

Failure of grafts @ 1 year implanted on arteries with non-significant FFR was 3 times higher

Aim

To compare retrospectively the **long-term clinical outcome** in patients treated with **FFR-guided CABG** versus patients treated with **Angio-guided CABG**

Primary endpoint

The rate of major adverse cardiac events, defined as all cause death, myocardial infarction and target vessel revascularization during 36-month follow-up

Inclusion criteria

- Stable angina / unstable angina
- Catheterization in our department between 2006 and 2010
- Indication for Coronary Artery Bypass Graft Surgery
- Having at least one intermediate stenosis (DS 30-70%)

Exclusion criteria

- STEMI / NSTEMI
- Concomitant valvular surgery

Patients were divided into

Angio-guided group

If CABG occurred without prior FFR assessment of any intermediate stenosis. Grafting was justified purely by the angiographic severity

FFR-guided group

If CABG occurred with prior FFR assessment of at least one intermediate stenosis. Grafting was done with FFR \leq 0.80 or deferred with FFR > 0.80

Center Aalst

Age, years

BMI, kg/m²

Diabetes, %

Previous MI, %

Previous PCI, %

Smoking habit, %

Family history, %

LVEF, %

Cardinyaccular

Male gender, %

Hypertension, %

Hypercholesterolemia, %

8th Coronary Physiology in the CathLab Course

p

< 0.001

0.010

0.069

0.917

0.587

0.034

0.081

< 0.001

0.794

1.000

0.931

Angio-guided FFR-guided

n=198

82

78

65

22

20

49

42

24

71 (61-79)

65 (56-72)

28 (25-30)

n=429

72

79

67

30

14

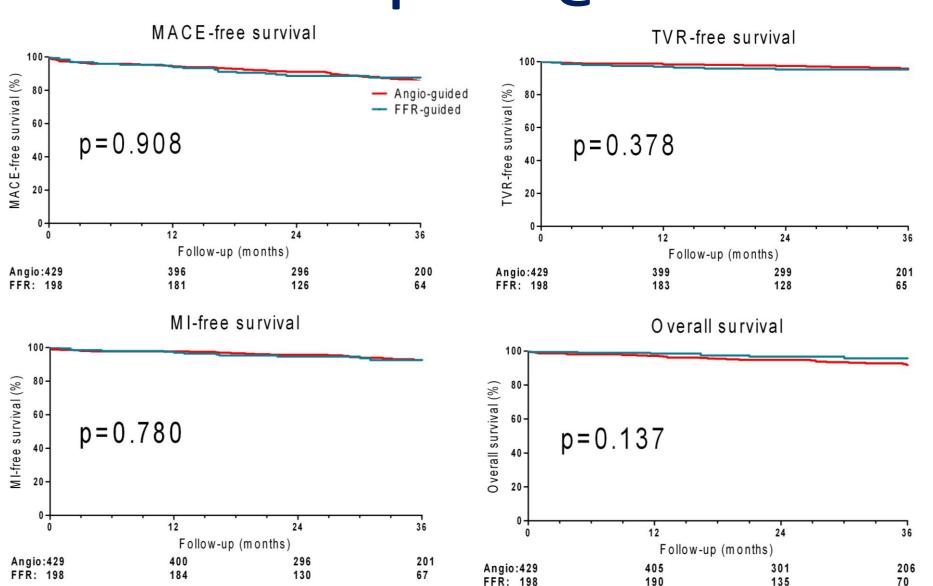
24

41

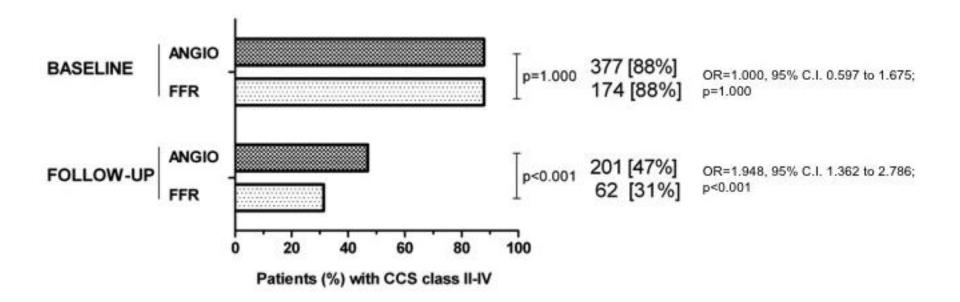
24

71 (60-80)

70 (63-76)


27 (24-30)

Angio-guided n=429 FFR-guided n=198



Clinical endpoints @ 36 months

CCS II-IV @ 36 months

Sub-analysis

Post hoc subanalysis on graft level

- Inclusion criteria

- From the same patient population, as described above
- Patients, where angiographic control performed for any reason (n_{pat}=160)
- Grafts, placed on vessel with intermediate stenosis (ngraft=234)

- Endpoint

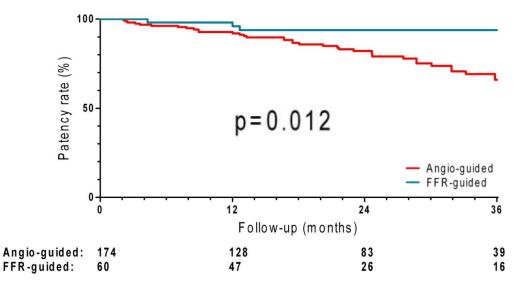
Graft patency at latest follow-up

Sub-analysis

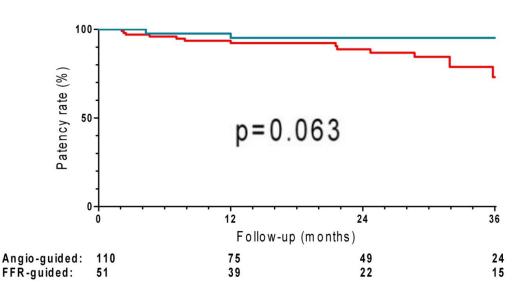
Analysed grafts were divided in two groups according to the guidance of revascularization:

Angio-guided grafts

Graft was placed on a vessel with intermediate stenosis, based on angiographic appearance


FFR-guided grafts

Graft was placed on a vessel with intermediate stenosis, based on proven functional significance (FFR \leq 0.80)



Graft patency @ 36 months

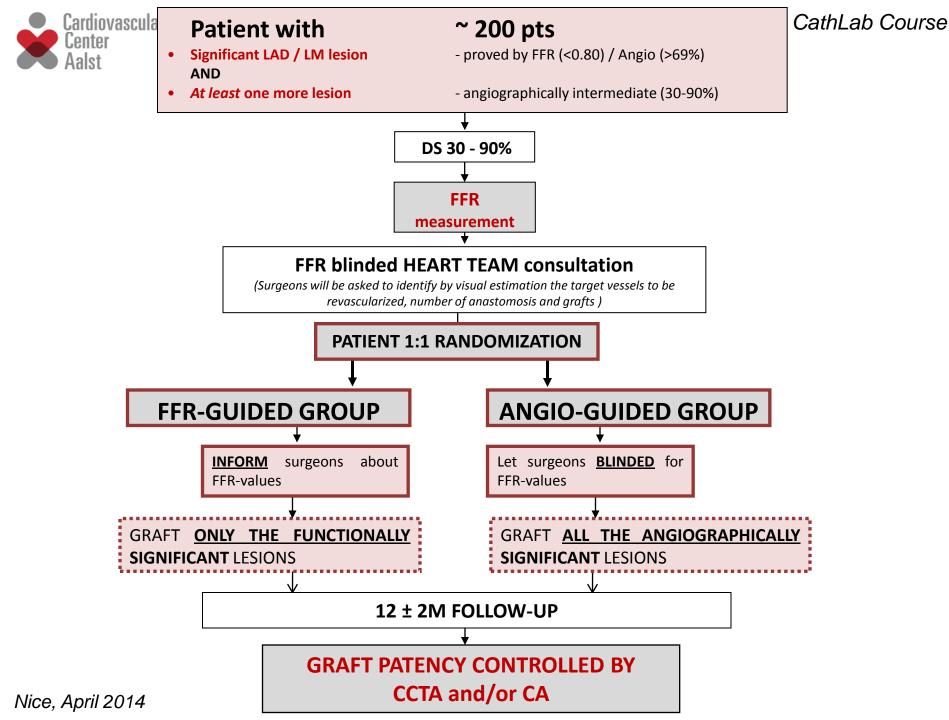
All grafts

Arterial grafts

Conclusion

- FFR-guidance of CABG is associated:
 - lower number of grafts
 - higher rate of off-pump surgery
 - better functional class

- Despite the lower number of grafts there is no
- excess in events after FFR-guided CABG



<u>GR</u>aft Patency <u>A</u>fter <u>FF</u>R-guided versus Ang<u>i</u>o-guided CABG: a randomized clinical <u>Tri</u>al (GRAFFITI trial)

www.clinicaltrial.gov NCT01810224

Principal investigators:

Emanuele Barbato
Bernard De Bruyne
Gabor Toth

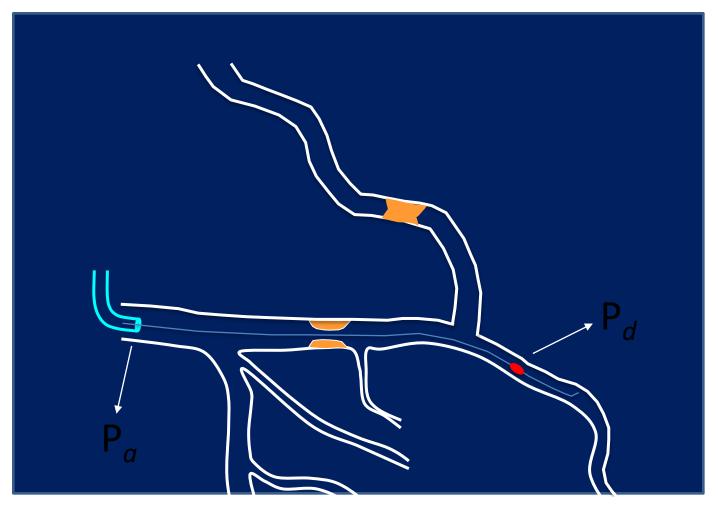
Endpoints

Primary:

- Rate of **occluded grafts** at 12M FU

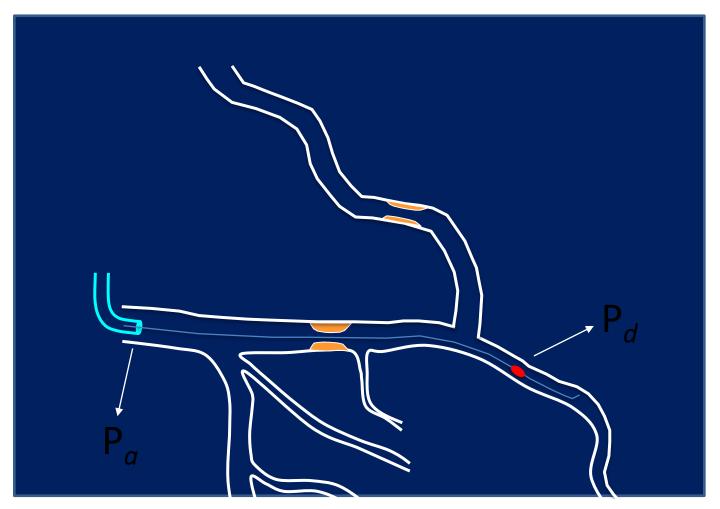
- **Secondary:** Graft patency at 12M FU (defined as average percent of patent graft per patient)
 - Perioperative myocardial infarction and periprocedural necrosis
 - Changes in Syntax Score classification regarding to Angio-guided vs FFR guided calculation
 - Length of hospitalization after surgery
 - Cost of Care: defined as costs of index hospitalization, rehospitalization, repeat revascularization (redo-CABG or PCI)
 - Changes in surgical strategy depending upon FFR results i.e. Openchest vs. Minithoracotomy, On-pump vs. Off-pump, etc.(in FFR-guided group only)
 - Changes in **functional state** (CCS classification)
 - Rate of Major Adverse Cardiovascular Events (Death, Myocardial Infarction, Symptom-driven revascularisation)

Role of FFR in CABG patients



After CABG

Is FFR guidance also viable in bypassed arteries?

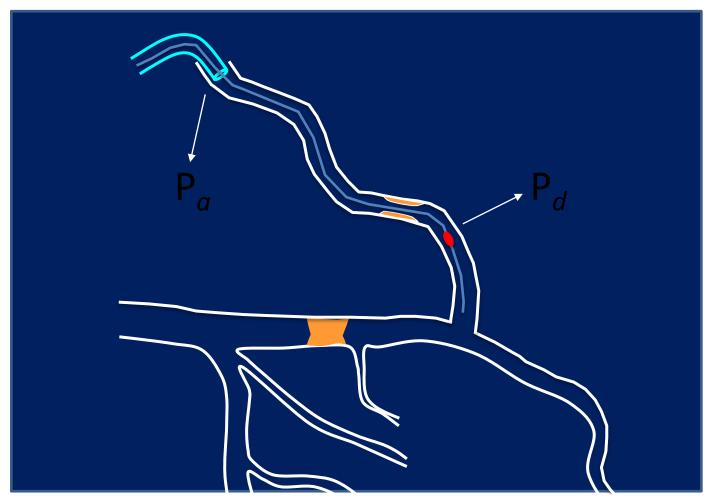

How to ... FFR with occluded bypass graft

FFR of the native stenotic vessel is not different from non-CABG setting

How to ... FFR with open bypass graft

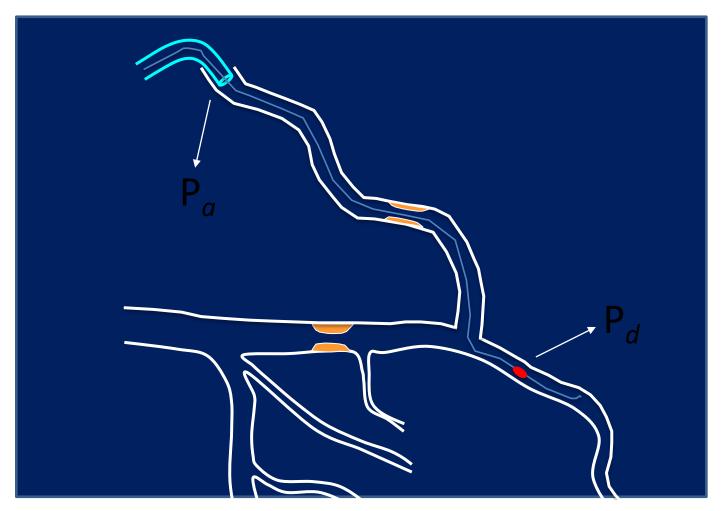
FFR of native stenotic vessel reflects the summation of hyperemic flow depending from both by-pass graft and stenotic native coronary artery

Role of FFR in CABG patients

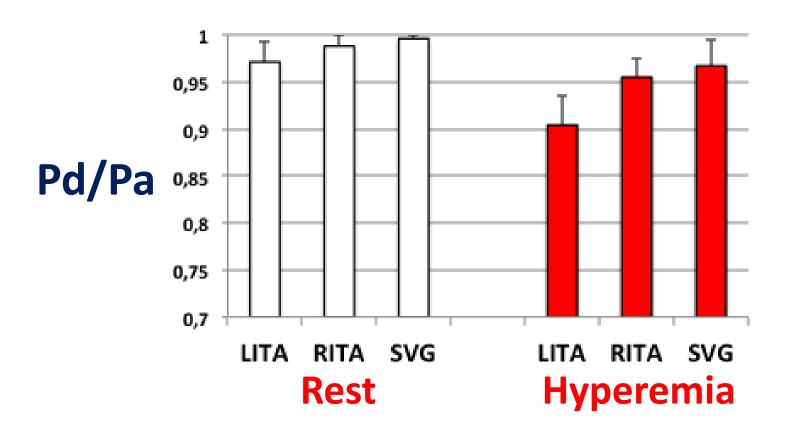


After CABG

Is FFR guidance also viable in bypass grafts?


How to ... FFR with occluded native vessel

Sensor of the pressure wire can be positioned beyond the graft stenosis!


How to ... FFR with open native vessel

Sensor of the pressure wire should be positioned beyond the graft stenosis and the distal anastomosis!

Resistance in bypass grafts and FFR

*LITA always implanted on LAD

Role of FFR in CABG patients

After CABG

Is FFR-guided PCI better than Angio-guided PCI in bypass grafts?

Aim

To compare retrospectively the **long-term clinical outcome** in patients undergoing **FFR-guided PCI** versus contemporary patients undergoing **Angio-guided PCI** of intermediate stenosis in **bypass graft**

Primary endpoint

The rate of major adverse cardiac and cerebrovascular events (MACCEs), defined as all cause death, non-fatal infarction, target vessel failure and cerebrovascular events

Inclusion criteria

- Stable angina / unstable angina
- Catheterization in our department between 2000 and 2011
- Having at least one intermediate stenosis (40-70%) of an arterial or a venous bypass graft

Exclusion criteria

- STEMI / NSTEMI
- Presence of serial stenosis located in bypass graft or in both bypass graft and its subtended native vessel
- Presence of sequential anastomosis in the target bypass graft

Patients were divided into:

Angio-guided group

If PCI of an intermediate bypass graft stenosis was performed or deferred based on the angiographic appearance of the coronary lesion

FFR-guided group

If PCI of an intermediate bypass graft stenosis was performed in case of FFR≤0.80 and deferred to medical therapy in case of FFR >0.80

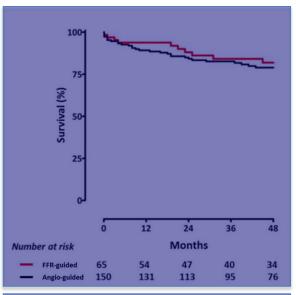
Clinical characteristics

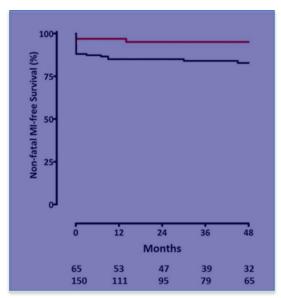
	FFR guided (n = 65)	Angio guided (n = 158)	P
Age (y)	69 ± 9.3	71 ± 8.9	.15
Male, n (%)	50 (77)	121 (77)	1.00
BMI (kg/m ²)	27 ± 4	27 ± 4	.24
EF (%)	63 ± 16	63 ± 17	.84
SBP (mm Hg)	144 ± 30	149 ± 33	.40
DBP (mm Hg)	67 ± 13	67 ± 10	.87
Smoker, n (%)	30 (46)	65 (41)	.55
Hypertension, n (%)	37 (57)	90 (57)	1.00
Hyperlipidemia, n (%)	43 (66)	97 (61)	.54
Diabetes, n (%)	15 (21)	46 (29)	.41
Previous MI, n (%)	23 (35)	56 (35)	1.00
PVD, n (%)	12 (18)	31 (20)	1.00
CVD, n (%)	6 (9)	19 (12)	.64
Previous PCI, n (%)	30 (46)	64 (40)	.46
Redo-CABG, n (%)	12 (18)	19 (12)	.21
CABG to angio Time (mo)	118 ± 78	126 ± 82	.19
Clinical presentation, n (%)			.30
Stable angina	53 (81)	117 (74)	
Unstable angina	12 (18)	41 (26)	

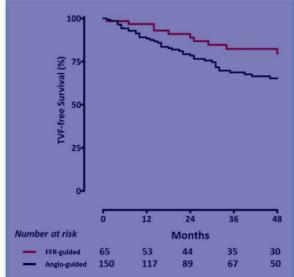
Procedural characteristics

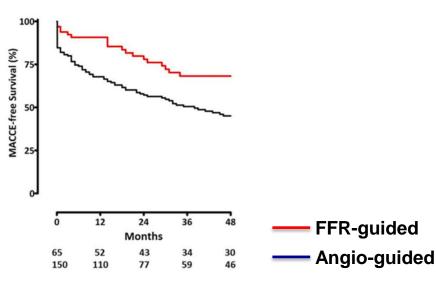
	FFR guided	Angio guided	P
PCI performed, n (%)	23 (35)	90 (57)	<.01
PCI on arterial grafts, n (%)	16 (70)	12 (13)	<.01
PCI-related myocardial territory, n (%)			<.01
LAD	14 (61)	19 (21)	
LCx	5 (22)	32 (36)	
RCA	4 (17)	39 (43)	
Embolic protection device, n (%)	0 (0)	3 (3)	.26
Stent per patient, n (%)	0.3 ± 0.5	0.7 ± 0.8	<.01
DES, n (%)	9 (14)	21 (13)	.83 .06 .12
Stent diameter (mm)	3.0 ± 0.3	3.5 ± 0.6	
Stent length (mm)	16.9 ± 5.2	21.1 ± 12.2	
PCI deferred, n (%)	42 (65)	68 (43)	<.01
Myocardial deferred territory, n (%)			.47
LAD	10 (24)	22 (32)	
LCx	16 (38)	27 (40)	
RCA	16 (38)	19 (28)	
Procedural time (min)	68 ± 26	62 ± 33	.23
X-ray time (min)	19 ± 14	17 ± 11	.37
Contrast medium (mL)	277 ± 110	294 ± 112	.44
Cost of procedure (E)	2240 ± 652	2416 ± 522	.03
Inhospital outcome			
PMI, n (%)	1 (1)	18 (11)	<.01
TIME 1 1 1 1 100	1 /11	0 (1)	1.00

0 (0)


5 (3)


AKIN, n (%)


nivii major biecaings, n (/o)



Clinical outcome

Clinical outcome

Overall	FFR guided	Angio guided	Unadjusted HR (95% CI)	P	PS-adjusted HR (95% CI)	P
Death, n (%)	10 (15)	29 (19)	0.81 (0.39-1.66)	.566	_	_
Death or nonfatal MI, n (%)	12 (18)	50 (33)	0.52 (0.28-0.97)	.041	-	-
Nonfatal MI, n (%)	3 (5)	24 (16)	0.28 (0.08-0.93)	.037	_	_
CVA, n (%)	0 (0)	5 (3)	0.03 (0.0-87.76)	.384	_	_
TVR, n (%)	9 (14)	33 (22)	0.60 (0.29-1.25)	.17		
TVF. n (%)	10 (1.5)	41 (27)	0.52 (0.26-1.03)	.061	_	_
MACCE, n (%)	18 (28)	77 (51)	0.46 (0.28-0.77)	.003	0.47 (0.30-0.75)	.001
Arterial grafts						
TVF, n (%)	3 (11)	7 (30)	0.11 (0.01-0.90)	.04	-	_
MACCE, n (%)	4 (15)	13 (56)	0.22 (0.07-0.66)	.008	-	_
Venous grafts					1	
TVF, n (%)	7 (18)	34 (27)	0.68 (0.30-1.53)	.35	-	_
MACCE, n (%)	14 (37)	64 (50)	0.67 (0.37-1.19)	.17) -	_

Conclusion

- FFR-guided PCI of intermediate stenosis in bypass graft is safe and results in a better clinical outcome as compared with an Angio-guided PCI
- This clinical benefit was more pronounced in arterial grafts, whereas it was limited to a reduced incidence of PMI in SVGs