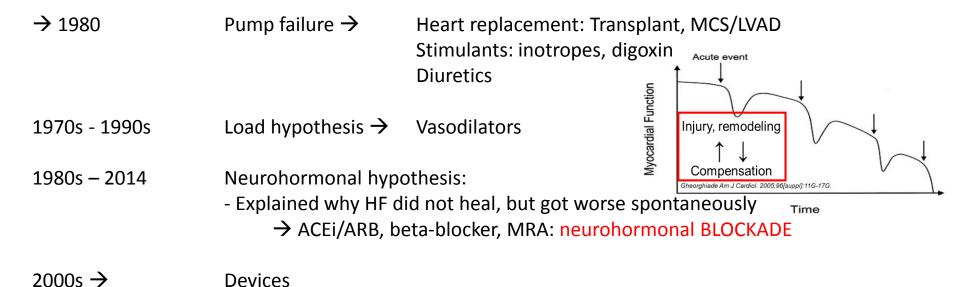
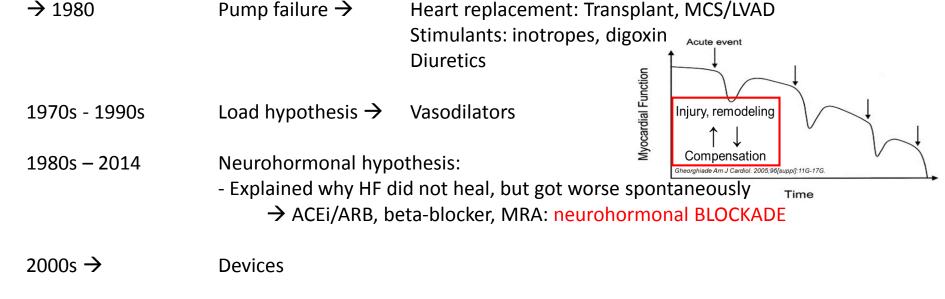


SwedeHF and registry-based trials in heart failure


Lars Lund


Disclosures:

Industry: Grants, consulting, honoraria: AstraZeneca, Novartis, Bayer, Relypsa, Vifor-Fresenius, Sanofi, Abbott, Merck, Pharmacosmos, Orion Pharma Non-industry: Grants: NIH, Swedish Heart-Lung Foundation, Swedish Research Council, SLL ALF, Erling Persson Foundation

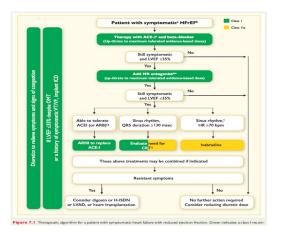
Heart failure (HFrEF) history and current understanding

Heart failure (HFrEF) history and current understanding

 $2014 \rightarrow$

2019 **→**

2020 →


More complex: SGLT2-inhibitors \rightarrow load, energetics, remodelling sGC stimulators (and activators) \rightarrow cGMP \rightarrow multiple targets (e.g. vasorelax, ↓hypertrophy, fibrosis, ↑compliance)

Heart Failure Challenges 2019 – how can a registry address these?

HFrEF

- Innovation
- Implementation

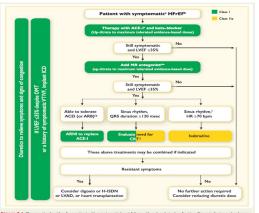

HFmrEF

- Innovation
- Expansion of HFrEF therapy ?

HFpEF

- Innovation
- Understanding phenotype(s)
- Novel targets

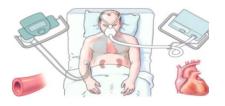
ADHF / Post-WHF


- Innovation
- Understanding AHF / WHF course
- Type and timing of therapy

Heart Failure Challenges 2019 – how can a registry address these?

HFrEF

- Innovation
- Implementation REGISTRY


HFmrEF

- Innovation
- Expansion of HFrEF therapy RRCT

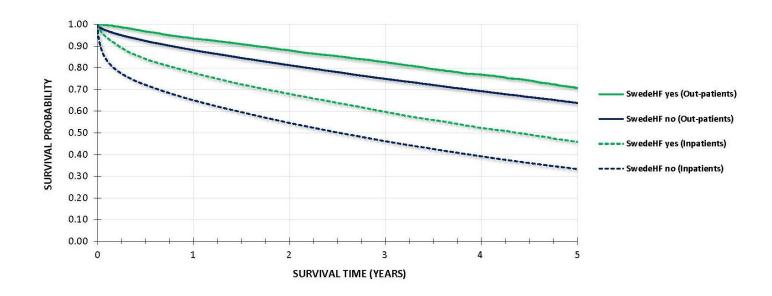
HFpEF

- Innovation
- Understanding phenotype(s)
- Novel targets
 REGISTRY

ADHF / Post-WHF

- Innovation
- Understanding AHF / WHF course
- Type and timing of therapy

Swedish Heart Failure Registry (SwedeHF):


RIKS SVIKT nationellt hjärtsviktsregister

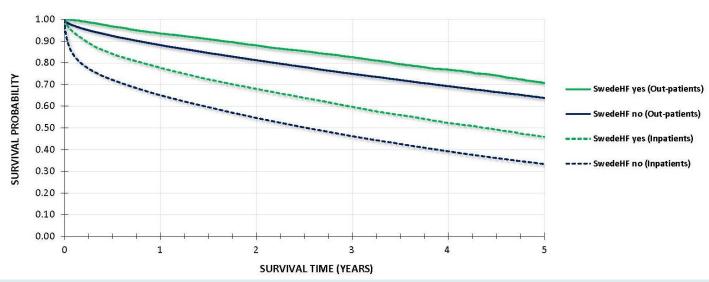
UCRO

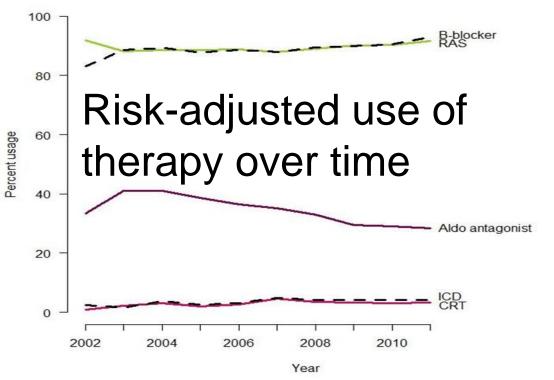
Uppsala Clinical Research Center

- 2000 → ongoing, continuous enrollment
- Inclusion criterion: physician-judged heart failure, in-patient or out-patient
- Key variables: EF, NT-proBNP, loop diuretic use, eGFR, Hb, K
- Online eCRF, managed by UCR
- Automatic outcomes from national registries:
 - Death monthly
 - ICD-10 codes for death and hospitalization and causes, new onset morbidity, yearly
 - Medication adherence continuously
- Minimal loss to follow-up, known vital status
- 120,000 registrations from 80,000 unique individuals
- Coverage: 12% of incident HF, 53% of prevalent HF in Sweden
- From ~68 of Sweden's ~75 hospitals

Registration in the Swedish Heart Failure Registry is associated with lower mortality

The reason is better use of evidence based HF therapy

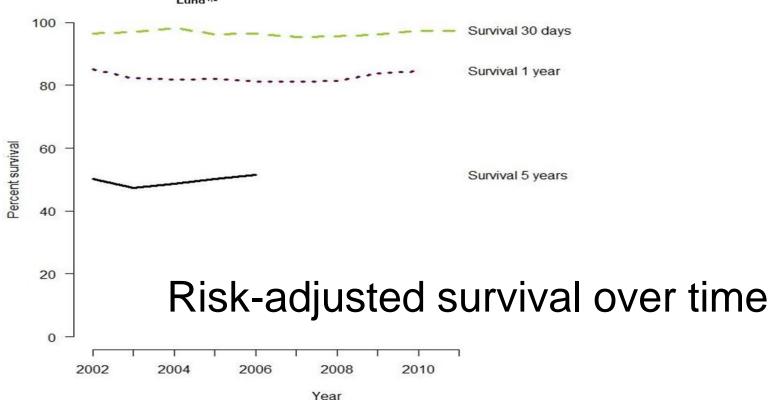



Table 1 Baseline characteristics in the intervention (enrolled in SwedeHF) vs. control group (not enrolled)

	Enrolled (n = 21 888)	Not enrolled (n = 209 549)	P-value
Medications HF medications, proven life-prolonging			
RAS antagonist (ACEI and or ARB)	17 878 (82%)	116 487 (56%)	< 0.001
Beta blocker MRA	18 481 (84%) 7182 (33%)	126 095 (60%) 38 271 (18%)	<0.001 <0.001

Use of evidence-based therapy and survival in heart failure in Sweden 2003-2012

Tonje Thorvaldsen^{1,2}*, Lina Benson³, Ulf Dahlström⁴, Magnus Edner¹, and Lars H. Lund^{1,2}



% target dose RASi	% patients
≤50%	42%
51-99%	12%
≥100%	46%

During follow-up	% patients			
Non-treated Started				
RASi	31%			
MRA	23%			
Treated Stopped				
RASi	9%			
MRA	30%			

Use of evidence-based therapy and survival in heart failure in Sweden 2003-2012

Tonje Thorvaldsen^{1,2*}, Lina Benson³, Ulf Dahlström⁴, Magnus Edner¹, and Lars H. Lund^{1,2}

Factors associated with underuse of mineralocorticoid receptor antagonists in

Table 2 Summary of current evidence on mineralocorticoid receptor antagonist underuse in heart failure with

reduced ejection fraction

Study MRA use

GWTG-HF5 32% of the eligible population.

IMPROVE HF¹³ 36% of the eligible population.

EuroHeart Failure Survey II14 47.5% of patients discharged after a hospital admission for HF.

ESC-HF Pilot Survey¹⁵ ~50% in inpatients at discharge and 44% in outpatients.

BIOSTAT-CHF7 56% of eligible patients before and 63% after HF treatment optimization.

ESC-HE-LT¹⁶ 53.9% of patients hospitalized for acute HF received MRA at discharge and 56.5% at 1 year from hospitalization. SwedeHF (current study)

40% of the eligible population.

Why MRA underuse?

RESEARCH ARTICLE

Factors associated with underuse of mineralocorticoid receptor antagonists in heart failure with reduced ejection fraction: an analysis of 11 215 patients from the Swedish Heart Failure Registry

Gianluigi Savarese¹*, Juan-Jesus Carrero², Bertram Pitt³, Stefan D. Anker^{4,5}, Giuseppe M.C. Rosano^{6,7}, Ulf Dahlström⁸, and Lars H. Lund^{1,9}

Causes of non-use are:

- eGFR ≤ 60
- Higher age
- Non-cardiology care
- Poor ACEi/ARB use

(K / BP: neutral, mix cause/effect)

Causes of d/c are:

HyperK, WRF, hypotension (Rosano exp consensus 2018)

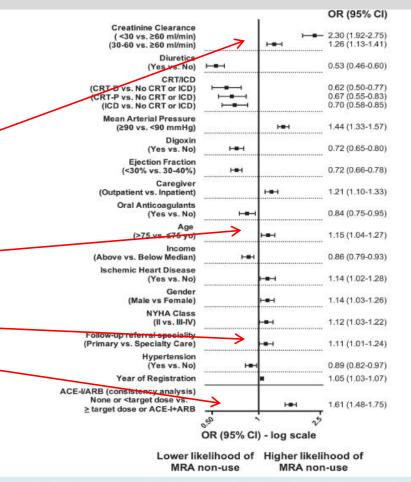
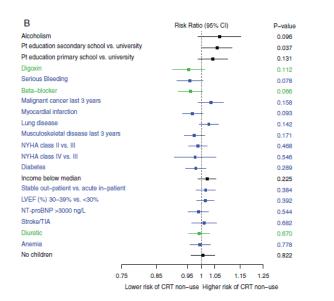
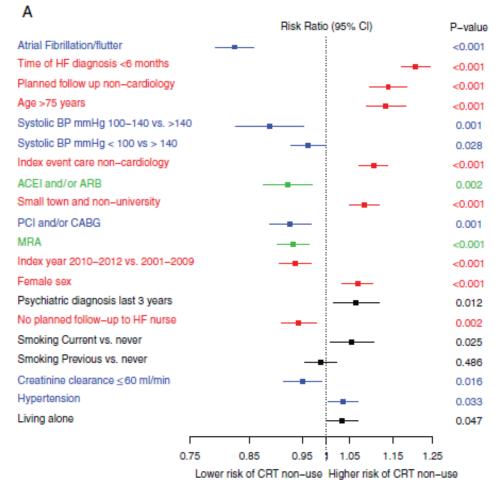
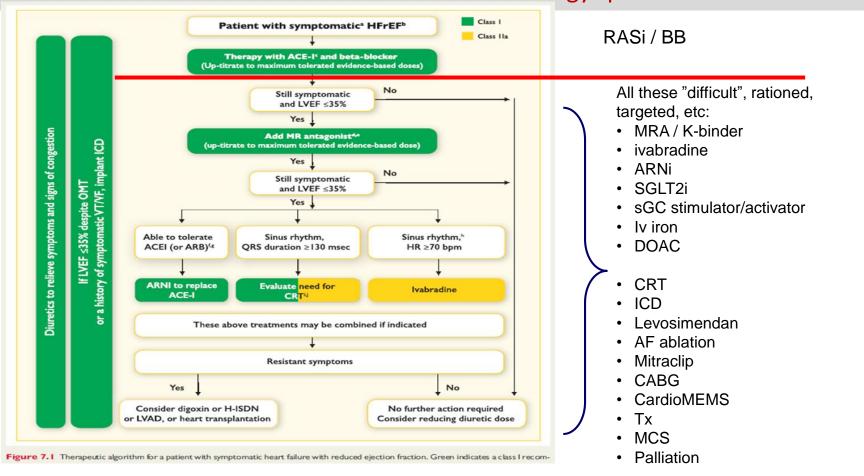


Figure 2 Independent predictors of mineralocorticoid receptor antagonist (MRA) non-use. Cl, confidence interval; CRT-D, cardiac


Reasons for CRT non-use



European Journal of Heart Failure (2017) doi:10.1002/ejhf.781


Association between demographic, organizational, clinical, and socio-economic characteristics and underutilization of cardiac resynchronization therapy: results from the Swedish Heart Failure Registry

Lars H. Lund^{1,2}*, Frieder Braunschweig^{1,2}, Lina Benson³, Marcus Ståhlberg^{1,2}, Ulf Dahlström⁴, and Cecilia Linde^{1,2}

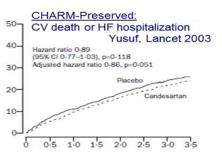
2016: simple but poor implementation → 2020: complex and ?implementation HF is the central cardiology space

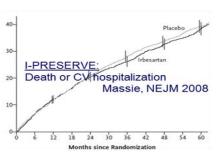
14

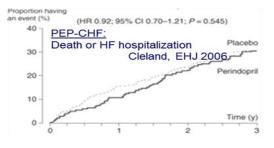
Heart Failure Challenges 2019 – how can a registry address these?

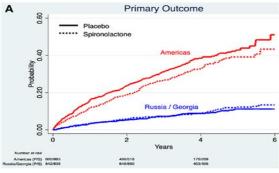
HFmrEF

- Innovation
- Expansion of HFrEF therapy RRCT

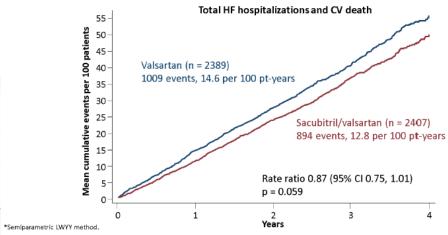



HFpEF


- Innovation
- Understanding phenotype(s)
- Novel targets


 REGISTRY

HFpEF: 5 trials were neutral but 3 were suggestive of benefit



TOPCAT: CV Death or HF Hospitalization Pitt NEJM 2014, Pfeffer Circ 2014

PARAGON-HF primary results

Recurrent event analysis of total HF hospitalizations and CV death*

New understanding: Reduced + mildly reduced is one phenotype and *preserved/normal is another*

	Reduced	Mid-range/ mildly reduced	Preserved/ normal
Median age	65-70	65-75	70-80
% women	< 1/3	< 1/3	> 1/2
Chronic coronary syndrome	50-70%	50-70%	20-50%
AF	25-40%	25-50%	30-60%
sBP	120-130	125-130	130-140
CKD	++	++	+++
NTproBNP	++	+	+
CV risk	+++	+	+
Non-CV risk	+	+	++
ARB, MRA, BB (sinus), ARNi Relative effect	+++	+++	-
ARB, MRA, BB (sinus), ARNi Absolute effect	+++	++	-

"How To" for HFpEF and HFmrEF phenotyping and trials?

- 1. New use of existing HFrEF drugs:
- Greatest potential for HFmrEF
- NTproBNP and structural heart disease for diagnosis
- NTproBNP, loop diuretic use, h/o HF hospitalization for enrichment

Registry Randomized Clinical Trials – RRCTs: MRAs, RAS-antagonists, beta-blockers Conventional RCTs: ARNi, SGLT2-inhibitors, sGC stimulators/activators

2. Drugs under development and narrower phenotypes: E.g. targeting microvascular inflammation (defined e.g. by coronary flow reserve) or early changes in left atrium?

SATELLITE: MPO-inhibitor vs. placebo in HFpEF

So how to conduct a pragmatic RRCT in heart failure?

Curr Heart Fail Rep (2017) 14:59-70 DOI 10.1007/sl 1897-017-0325-0

CLINICAL TRIALS (J BUTLER, SECTION EDITOR)

Registry-Based Pragmatic Trials in Heart Failure: Current Experience and Future Directions

Lars H. Lund 1,2 · Jonas Oldgren 3 · Stefan James 3

So how test new *use* of existing therapy?

Curr Heart Fail Rep DOI 10.1007/s11897-017-0325

CLINICAL TRIALS (J BUTLER, SECTION EDITOR)

Registry-Based Pragmatic Trials in Heart Failure: Current Experience and Future Directions

Lars H. Lund^{1,2} · Jonas Oldgren³ · Stefan James³

Registry

- Efficient enrolment integrated in real-world health care
- Real-world generalizable descriptive and outcomes data
- Epidemiological characterization
- Utilization of evidence based therapy
- Quality reporting, benchmarking
- Quality improvement
- Equality of care
- Risk markers
- Comparative outcomes → Hypothesis generating
- Efficient
- Inexpensive

But:

Lack of randomization
 → NOT comparative
 effectiveness

So how test new *use* of existing therapy?

Curr Heart Fail Rep DOI 10.1007/s11897-017-0325-0

CLINICAL TRIALS (J BUTLER, SECTION EDITOR)

Registry-Based Pragmatic Trials in Heart Failure: Current Experience and Future Directions

Lars H. Lund^{1,2} · Jonas Oldgren³ · Stefan James³

RCT

Randomized evidence

But:

- · Complex regulatory requirements
- · Collection of non-essential data
- For-profit CROs
- Multiple ethics approvals
- Complex consent forms
- · Many unknowns for power calculation
- In-feasible: (pre)-screening is manual, inefficient and unpredictable
- Enrolment slow
- · Trial population unpredictable
- Outcomes assessment manual, inefficient
- Selective → not generalizable to real world
- Expensive to conduct: in HF: 5,000 patients, >\$200M, ~\$50,000 per patient
- Industry must recoup drug development and trial costs
- Delivers novel patented expensive therapy: e.g. sacubitril/valsartan: \$5-15 per day

Registry

- Efficient enrolment integrated in real-world health care
- Real-world generalizable descriptive and outcomes data
- Epidemiological characterization
- Utilization of evidence based therapy
- Quality reporting, benchmarking
- Quality improvement
- Equality of care
- Risk markers
- Comparative outcomes -> Hypothesis generating
- Efficient
- Inexpensive

But:

Lack of randomization
 NOT comparative
 effectiveness

So how test new *use* of existing therapy?

Curr Heart Fail Rep DOI 10.1007/s11897-017-0325-0

CLINICAL TRIALS (J BUTLER, SECTION EDITOR)

Registry-Based Pragmatic Trials in Heart Failure: Current Experience and Future Directions

Lars H. Lund^{1,2} · Jonas Oldgren³ · Stefan James³

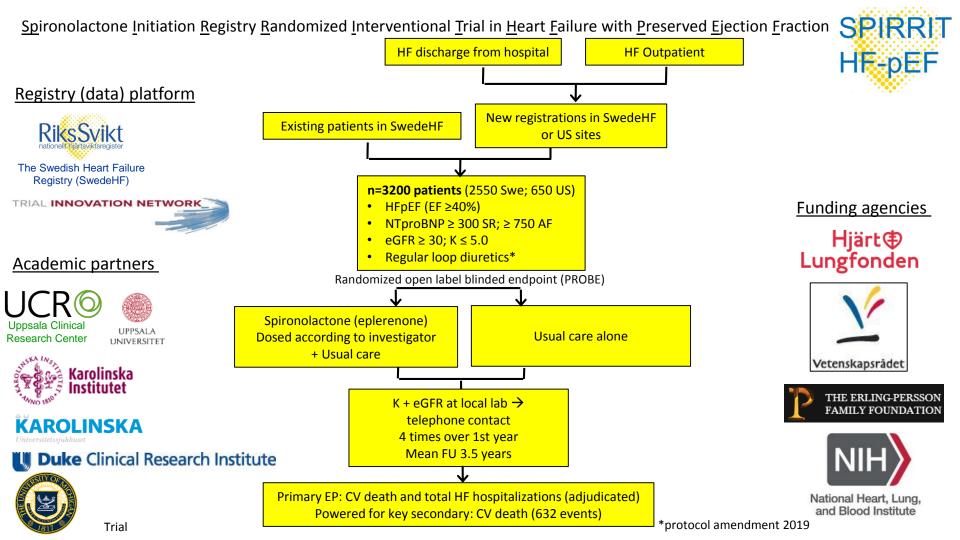
RCT

Randomized evidence

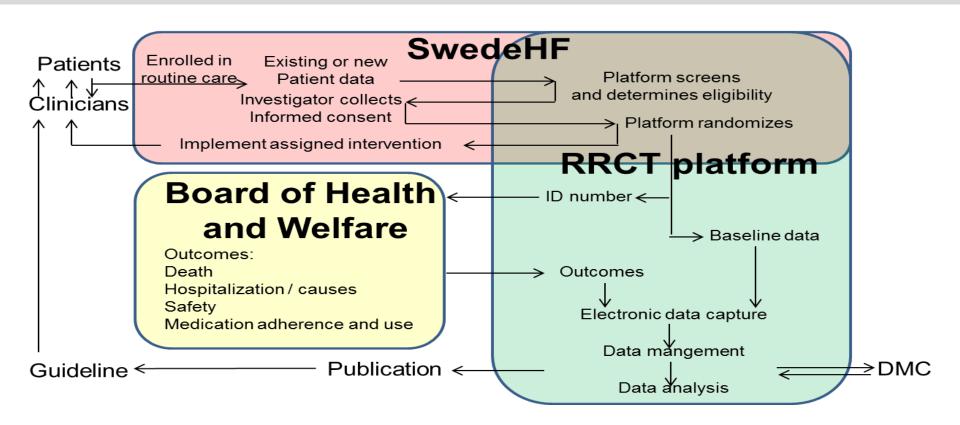
But:

- · Complex regulatory requirements
- · Collection of non-essential data
- For-profit CROs
- Multiple ethics approvals
- Complex consent forms
- · Many unknowns for power calculation
- In-feasible: (pre)-screening is manual, inefficient and unpredictable
- · Enrolment slow
- Trial population unpredictable
- Outcomes assessment manual, inefficient
- Selective → not generalizable to real world
- Expensive to conduct: in HF: 5,000 patients, >\$200M, ~\$50,000 per patient
- Industry must recoup drug development and trial costs
- Delivers novel patented expensive therapy: e.g. sacubitril/valsartan: \$5-15 per day

RRCT


- · Simplified regulatory procedures
- Focus on essential baseline and outcome data
- Non-profit AROs
- Single ethics approval
- · Simplified consent forms
- For power calculation: know eligible sample and event rates
- Feasible: Have lists of existing and know n new eligible patients
- (Pre)-screening is automated, efficient and predictable
- Outcomes assessment automatic
- Non-selective: both efficacy and effectiveness
- Inexpensive to conduct: ~\$5M = ~\$1,000 per patient
- Non-selective → real world evidence
- Promotes adoption of evidence into practice
- Delivers new use of existing drug: generic HF drug: e.g spironolactone 10 cents per day

Registry


- Efficient enrolment integrated in real-world health care
- Real-world generalizable descriptive and outcomes data
- Epidemiological characterization
- Utilization of evidence based therapy
- Quality reporting, benchmarking
- Quality improvement
- Equality of care
- Risk markers
- Comparative outcomes -> Hypothesis generating
- Efficient
- Inexpensive

But:

Lack of randomization
 → NOT comparative
 effectiveness

Design: Swe registries USA: DCRI Trial Innovations Network

Summary SwedeHF and registry-based trials in heart failure

- Registries improve outcomes by analyzing and improving implementation
- Registries improve understanding of clinical phenotypes
- Regsitries can conduct RRCTs