Peripheral artery disease (PAD) is highly prevalent in patients with diabetes and associates with a high rate of limb amputation and poor prognosis. Surgical and catheter-based revascularization have failed to improve outcome in diabetic patients with PAD. Hence, a need exists to develop new treatment strategies able to promote blood vessel growth in the ischemic limb of diabetic patients. Mono-methylation of histone 3 at lysine 4 (H3K4me1) - a specific epigenetic signature induced by the methyltransferase SETD7 - favours a chromatin active and open state thus enabling the gene transcription. Patients with diabetes and HG in presence of SETD7-siRNA and Scr.siRNA.

Primary human arterial endothelial cells (HAECs) were exposed to normal glucose (NG, 5 mM) or high glucose (HG, 20 mM) concentrations for 48 hours. In vitro angiogenic assays like migration assay & tube formation assay were performed. Pharmacological blockade of SETD7 was achieved by using the highly selective inhibitor called (R)-PFI-2 HG + (R)-PFI-2. T1D mice (streptozotocin-induced diabetes) was orally treated with (R)-PFI-2 and with vehicle for 21 days and followed by induction of hindlimb ischemia. Blood flow recovery was analysed at 30 minutes, 7 and 14 days by laser doppler imaging. Gastrocnemius muscle samples from patients with and without T2D were employed to translate our experimental findings.

Purpose

Peripheral artery disease (PAD) is highly prevalent in patients with diabetes and associates with a high rate of limb amputation and poor prognosis. Surgical and catheter-based revascularization have failed to improve outcome in diabetic patients with PAD. Hence, a need exists to develop new treatment strategies able to promote blood vessel growth in the ischemic limb of diabetic patients. Mono-methylation of histone 3 at lysine 4 (H3K4me1) - a specific epigenetic signature induced by the methyltransferase SETD7 - favours a chromatin active and open state thus enabling the gene transcription. Patients with diabetes and HG in presence of SETD7-siRNA and Scr.siRNA.

RESULTS

Primary human arterial endothelial cells (HAECs) were exposed to normal glucose (NG, 5 mM) or high glucose (HG, 20 mM) concentrations for 48 hours. In vitro angiogenic assays like migration assay & tube formation assay were performed. Pharmacological blockade of SETD7 was achieved by using the highly selective inhibitor called (R)-PFI-2 HG + (R)-PFI-2. T1D mice (streptozotocin-induced diabetes) was orally treated with (R)-PFI-2 and with vehicle for 21 days and followed by induction of hindlimb ischemia. Blood flow recovery was analysed at 30 minutes, 7 and 14 days by laser doppler imaging. Gastrocnemius muscle samples from patients with and without T2D were employed to translate our experimental findings.

CONCLUSIONS

Targeting SETD7 represents a novel epigenetic-based therapy to boost neovascularization in diabetic patients with PAD.