BACKGROUND

Dilated Cardiomyopathy (DCM) is a common form of cardiomyopathies and is characterized by an enlarged left ventricle and reduced cardiac output. Left ventricular non-compaction cardiomyopathy (LVNC) is a rare genetic heart condition. LVNC is characterized by trabeculated myocardium, which develops during embryogenesis as the myocardial tissue does not compact completely. RBM20 is a splicing factor with specific expression in the heart and is preserved from fish to human. Furthermore, RBM20 is a well-known DCM causing gene.

PURPOSE and AIM

The aim of the study was to establish an in vitro induced pluripotent cell (iPSC) system from LVNC and DCM patients to gain insights into the pathophysiology caused by a genetic predisposition in the splicing factor RBM20.

METHODS

Donated somatic material from one LVNC patient, two DCM patients, and healthy controls were reprogrammed into an iPSC and subsequently differentiated into functional beating 2-month-old cardiomyocytes (CM). iPSC-CM were used in analyses to study LVNC and DCM by investigating splicing isoforms of RBM20 targets by RT-PCR, sarcomeric disarray with immunostaining, calcium handling parameters with Fluo-4 and FURA-2 probes and protein analysis with Western blots. The b-blocker Metoprolol and the calcium-channel blocker Verapamil were evaluated for their therapeutic potential in RBM20-mutant-based LVNC and DCM in addition. Isogenic RBM20 rescue (res) lines were generated from LVNC- and DCM-iPSC to analyse the direct contribution of the respective RBM20 mutations.

RESULTS

1: iPSC generation of RBM20-based LVNC and DCM

- IPSC generation with TRA-1-60
- Patient-specific IPSC
- Cardiac differentiation efficiency for all iPSC-CM is 89%. Analysis of CM purity at day 60-90 post IPSC-CM after cTNT staining and quantification with FLOW. Unsorted IPSC serve as negative control.

2: Molecular basis: shared and differential missplicing

- Shared and differential missplicing in LVNC and DCM-CM. Every dot represents one differentiation. Shared missplicing in TTN and RYR2. LVNC-specific missplicing in CAMKK2 and TRDN. DCM-specific missplicing in LDB3. p-value by Mann-Whitney test.

3: Sarcomeric disarray in LVNC and DCM

- Sarcomeric regularity is disturbed in LVNC- and DCM-CMs compared to control-CMs. The phenotype is reversed in the rescue lines. No of differentiations/measured pictures are control (6/112), LVNC (7/128), real/VNC (4/73), DCM (1/479). DCM (3/55) and real/DCM (4/71). p-value by Kruskal-Wallis against control. p-value by Mann-Whitney test.

4: Calcium handling: differential phenotypes for LVNC and DCM

5: Verapamil as therapeutic option

- Left: Metoprolol and Verapamil significantly reduce calcium leak in DCM-CM, end numbers DCM: real vs Verapamil (3/44 vs 3/44) and DCM basal vs Metoprolol (3/44 vs 3/44). Right: Verapamil slows fasted calcium kinetics in LVNC-CM and restores reaction to iso. No of differentiations/measured cells are basal/Verapamil treatment (3/38/3/40/3/41) and basal/Metoprolol treatment (2/22/2/22/22).

CONCLUSION

- This work was supported by the Heidenreich von Siebold program (6538), SFB 1002 (GH), BMBF (6W, KB, KSB) and the DZHK (KB, BM, LS). We thank Johanna Heine and Sandra Georgi for excellent technical assistance.

Correspondence to: Prof. Dr. Katrin Streckfuss-Bömeke, Katrin.streckfuss@med.uni-goettingen.de

The authors declare no conflict of interest.