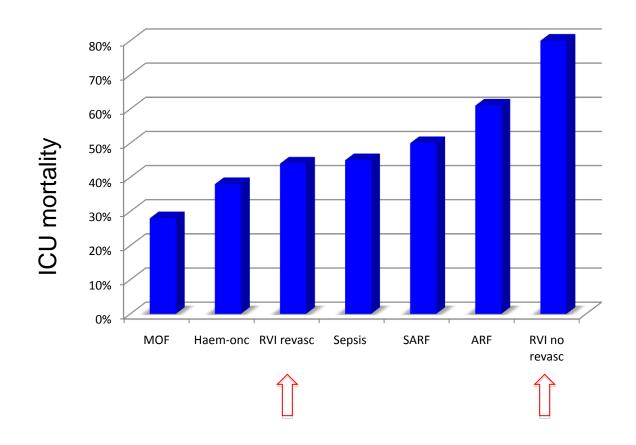

Management of the RV in cardiogenic shock

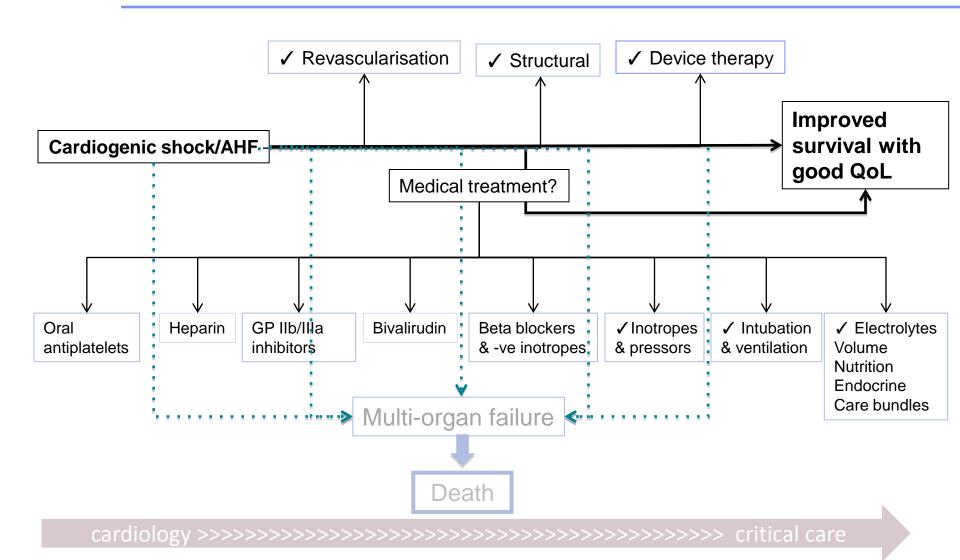
Susanna Price

Consultant Cardiologist & Intensivist Royal Brompton & Harefield NHS Foundation Trust Honorary Senior Lecturer, NHLI, Imperial College, London

Disclosures


No disclosures/conflicts of interest

Cardiogenic shock


Society of Critical Care Medicine

The Intensive Care Professionals

Cardiogenic shock management

Guidelines, 2016

Statement

Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology

Veli-Pekka Harjola ☑, Alexandre Mebazaa, Jelena Čelutkienė,

Dominique Bettex, Hector Bueno, Ovidiu Chioncel, Maria G. Crespo-Leiro,

Volkmar Falk, Gerasimos Filippatos, Simon Gibbs, Adelino Leite-Moreira,

Johan Lassus, Josep Masip, Christian Mueller, Wilfried Mullens, Robert Naeije,

Anton Vonk Nordegraaf, John Parissis, Jillian P. Riley, Arsen Ristic,

Giuseppe Rosano, Alain Rudiger, Frank Ruschitzka, Petar Seferovic,

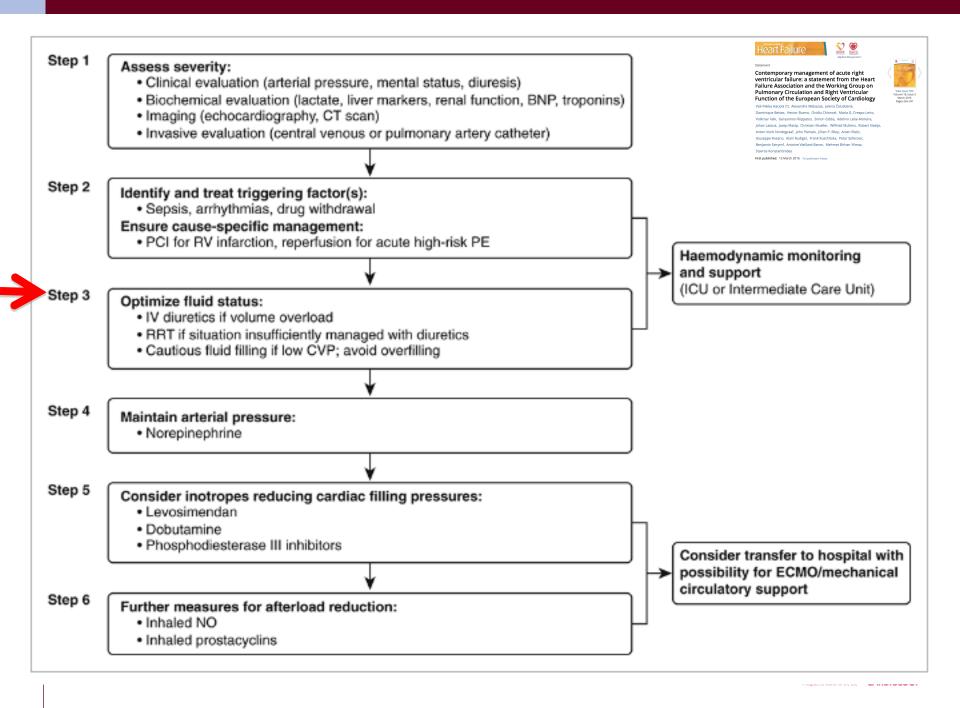
Benjamin Sztrymf, Antoine Vieillard-Baron, Mehmet Birhan Yilmaz,

Stavros Konstantinides

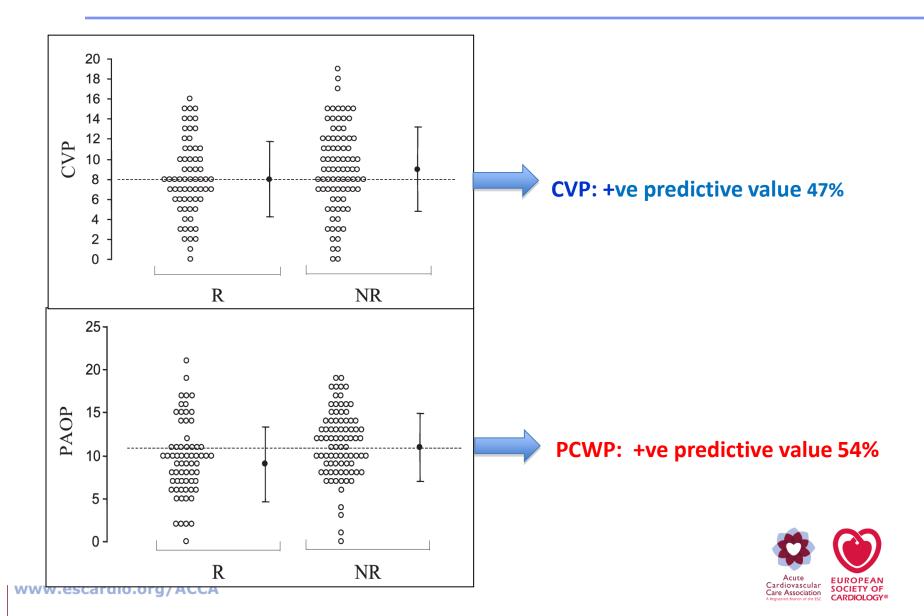
First published: 15 March 2016 Full publication history

Complex, management requires understanding of anatomy and mechanics, Identification

Treat underlying causes


Support

Uncertainties remain

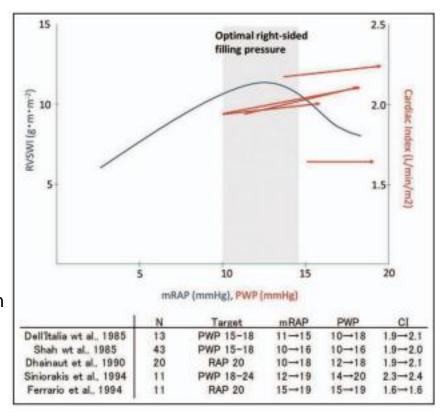


View issue TOC Volume 18, Issue 3 March 2016 Pages 226–241

Volume?

RV preload optimisation

- Initial studies:
 - Normal saline infusion, maintaining RAP <10mmHg
- Later clinical studies
 - Variable response reported
 - Aim target PCWP 18-24 mmHg
- Berisha et al., 41 patients, electrocardiographic and haemodynamic criteria for RV infarction
 - maximal RV SWI with filling pressure 10-14mmHg
 - mean RAP >14mmHg associated with RV distension
 - haemodynamic response variable optimal PCWP (corresponding to maximum LVSWI) 16mmHg

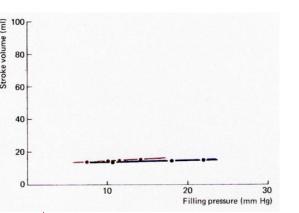

RV preload optimisation

Smaller studies: Change in PCWP and CI Wide variation in response No linear association with higher mRAP target

Practically:

Aim transmural pressure 8-12mmHg

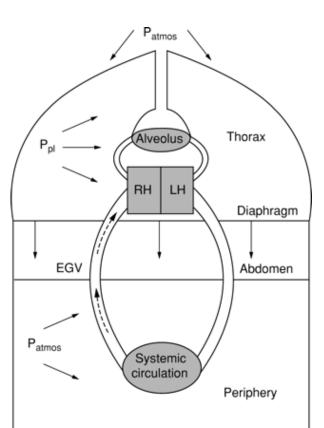
Measure CO and ScvO₂/systemic organ perfusion (not well-studied in acute RV failure)


1. Preload evaluation

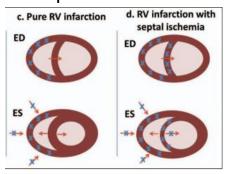
IPPV: Increases ITP

Hypovolaemia: Sepsis/SIRS Vascular permeability Insensible loss

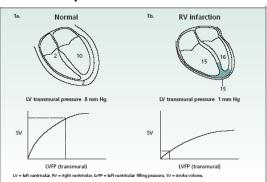
P_{syst} reduced by analgesia & sedatives

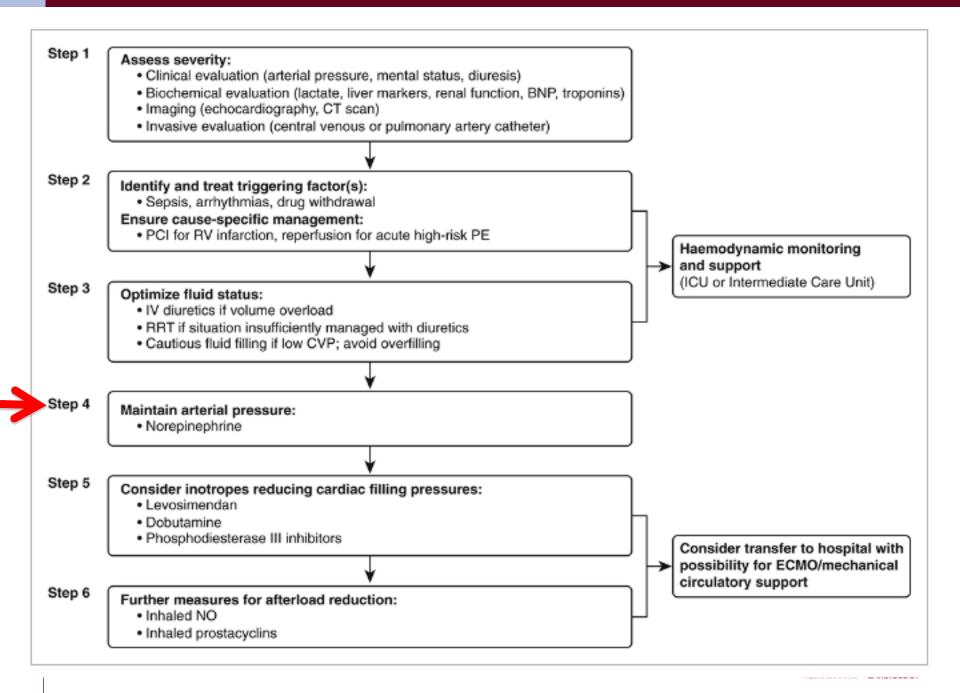

2. Pressure-volume

3. RV afterload evaluation


PVR normal: need increased RVEDP

PVR elevated: increase in RVEDP will shift septum





4. Septal involvement

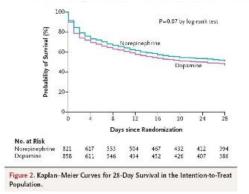
5. The pericardium

Vasoconstriction

Dopamine

- If >15mcg/kg/min is α-agonist
- Positive inotrope
- Elevation in PCWP

Noradrenaline


- Constrictor
- Antithrombotic
- Positive inotrope

Comparison of Dopamine and Norepinephrine in the Treatment of Shock

Daniel De Backer, M.D., Ph.D., Patrick Biston, M.D., Jacques Devriendt, M.D., Christian Madl, M.D., Didier Chochrad, M.D., Cesar Aldecoa, M.D., Alexandre Brasseur, M.D., Pierre Defrance, M.D.,

1678 patients with circulatory shock – 280 cardiogenic

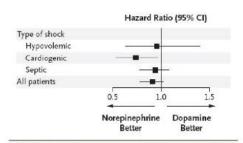
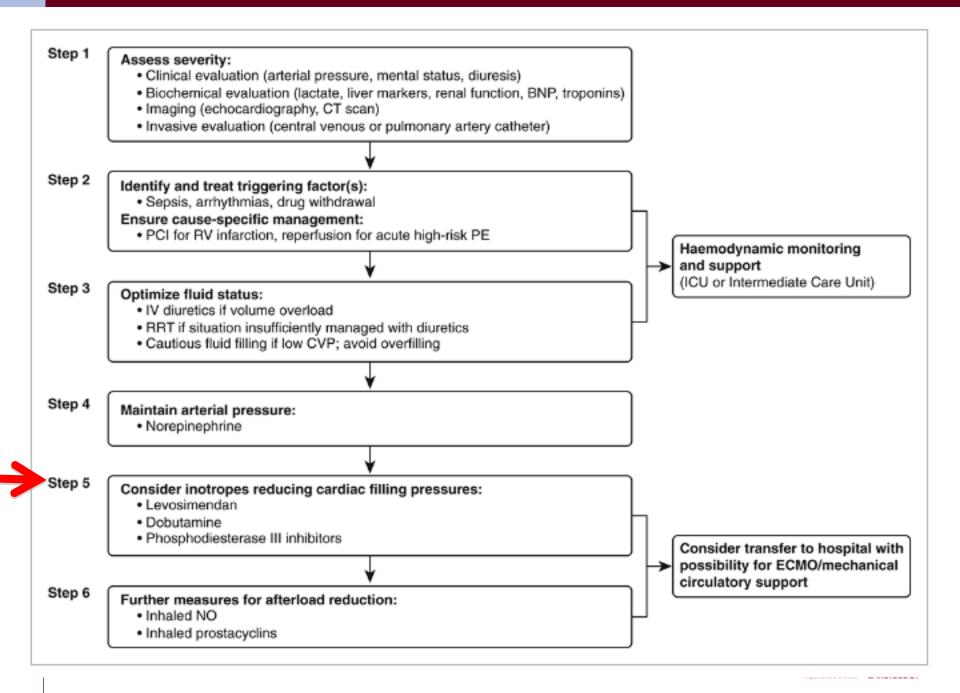


Figure 3. Forest Plot for Predefined Subgroup Analysis According to Type of Shock.


Systemic arterial pressure optimisation

Vasoactive drugs for management of acute right ventricular failure and their mechanism of action

	Receptor Binding						
Agent	α1	β1	β2	D	V1	Notes	
Norepinephrine	++	+				Improves PA/RV coupling in animals (73–75)	
Phenylephrine	++					Increases PVR (71, 74, 77); may induce reflex bradycardia	
Epinephrine	++	++	+			(<u>79</u>)	
Vasopressin					+	Dose dependent pulmonary vasodilatation (0.01-0.03 U/min) and vasoconstriction (24, 82, 83)	
Dopamine						Risk of arrhythmias	
Low (<5 μg/kg/min)		+		++			
Medium (>10 ug/kg/min)	+	++		++			
High (>10 μg/kg/min)	++	++		++			
Dobutamine		++	+			β ₂ -mediated drop in SVR (<u>31</u>); risk of arrhythmias	
Milrinone						Phosphodiesterase-3 inhibitor; inotropy and pulmonary vasodilatation; drop in LVEDP and SVR (72, 84, 89); risk of arrhythmias	

Definition of abbreviations: D = dopaminergic receptor; LVEDP = left ventricular end-diastolic pressure; PA = pulmonary artery; PVR = pulmonary vascular resistance; RV = right ventricle; SVR = systemic vascular resistance; V1 = vasopressin receptor 1. + = low to moderate affinity, ++ = moderate to high affinity.

Positive inotropic agents

- Diverse collection of pluripotent molecules
- Differing pharmacological properties
- Some shared activities only one of which is positive inotropy
 - Will increase dP/dt with variable effects on cardiac output/index
 - Alteration in myocardial oxygen demand
 - Arrhythmia

Br J Pharmacol. 2012 Apr; 165(7): 2009–2011. doi: 10.1111/j.1476-5381.2011.01776.x PMCID: PMC3413839

Inotropes and vasopressors: more than haemodynamics!

Hendrik Bracht, 1 Enrico Calzia, 1 Michael Georgieff, 1 Joel Singer, 2 Peter Radermacher, 1 and James A Russell 3

- Alteration in bacterial metabolism and translocation.
- Alteration in inflammatory markers and ROS
- Immune-modulatory effects
- Coagulation
- Differential effects on macrocirculation & microcirculation

Conventional Hemodynamic Resuscitation May Fail to Optimize Tissue Perfusion: An Observational Study on the Effects of Dobutamine, Enoximone, and Norepinephrine in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock

Corstiaan A. den Uil¹*, Wim K. Lagrand², Martin van der Ent³, Koen Nieman¹, Ard Struijs¹, Lucia S. D. Jewbali¹, Alina A. Constantinescu¹, Peter E. Spronk⁴, Maarten L. Simoons¹

	Dobutamine (n = 14)	Enoximone (n = 10)	Norepinephrine (n = 9)	P-value
ΔHR, bpm	+9 [0; +16]**	+4 [-11; +9]	+1 [-15; +4]	NS
ΔMAP, mmHg	+6 [-5; +21]	+8 [+1; +14]	+17 [+13; +32]**	NS
Δ CVP, mmHg	-1 [-3; +1]	-2 [-3; -1]*	+2 [-4; +4]	NS
ΔPCWP, mmHg	-2 [-4; -1]**	-2 [-3; -1]**	+5 [-1; +7]	NS
Δ MPAP, mmHg $^{\mathrm{a}}$	0 [-3; +3]	-1 [-9; 0]	+4 [-1; +7]	NS
Δ Cl, L.min $^{-1}$.m $^{-2}$	+0.8 [+0.3; +1.4]**	+0.6 [-0.1; +1.5]	0.0 [-0.5; +0.1]	0.006
Δ SVR, dynes.sec.cm $^{-5}$	-201 [-623; +220]	-119 [-491; +175]	+390 [+237; +505]*	0.03
ΔSvO2, %	+6 [+2; +12]**	0 [-3; +4]	0 [-3; +6]	0.04
Δ Lactate, mmol.L $^{-1}$	-0.4 [-2.5; -0.1]**	0.0 [-0.6; +0.2]	0.0 [-0.2; +0.5]	NS
ΔDelta-T, °C	-0.4 [-0.8; 0]	-1.1 [-1.9; +0.6]	0.0 [-2.2; +0.6]	NS
Δ PCD, mm.mm $^{-2}$	+0.6 [-0.9; +2.3]	+2.0 [+0.5; +3.4]*	-0.4 [-3.3; 0.0]	0.01

Abbreviations: HR, heart rate; MAP, mean arterial pressure; CVP, central venous pressure; PCWP, pulmonary capillary wedge pressure; MPAP, mean pulmonary artery pressure; CI, cardiac index; SVR, systemic vascular resistance; SvO₂, mixed-venous oxygen saturation; delta-T, central-peripheral temperature gradient; PCD, perfused capillary density.

Values represent median [interquartile range]. The p-value in the last column represents differences among groups. Asterisks indicate statistical significance versus baseline:

P-values>0.05 (NS, non-significant) are not shown.

^{*,} p<0.05;

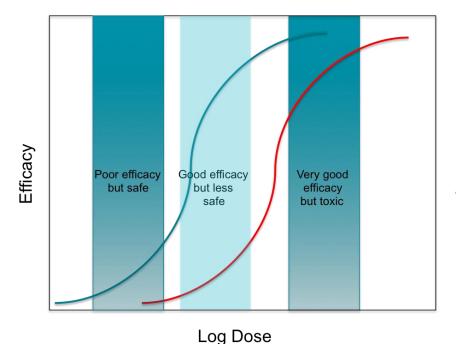
^{**,} p<0.01.

^aA pulmonary artery catheter was present in 27/33 (82%) of the measurements. doi:10.1371/journal.pone.0103978.t003

Cardiac output: global vs regional perfusion?

Regional resistance:

- neurohumoral factors related to inflammation and the sympathetic nervous system
- local factors related to autoregulation


Key (neglected) organs:

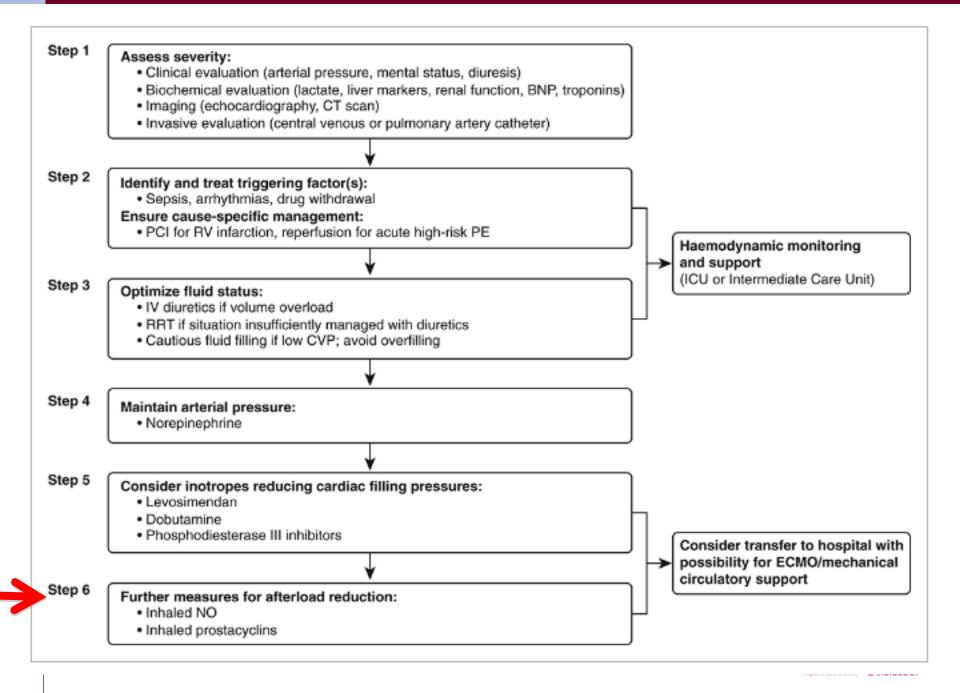
- GIT (gastric tonometry, splanchnic/hepatic saturations, indocyanine green)
- Brain

Each inotropic agent: efficacy vs toxicity

Each inotropic agent

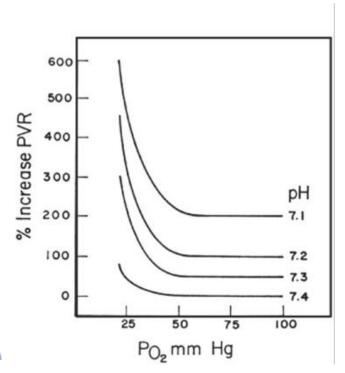
- Each organ system
 - Cardiac
 - •Renal

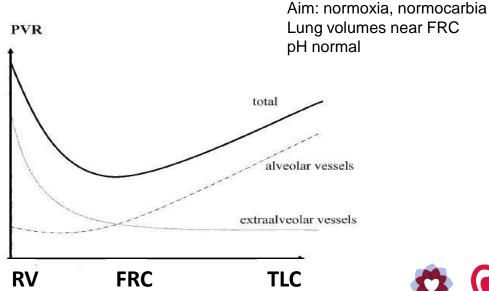
Toxicity


- Hepatic
- Cerebral
- •GIT
- Microcirculation
- Each pathological situation:
 - Sepsis
 - •AMI+CS
 - •DCM+CS
 - Haemorrhagic shock
- In context of different ICU interventions

Which inotrope?

•No real evidence to support one over another




Afterload reduction

- Critical illness frequently associated with increased PVR
- HPV alveolar, pulmonary arterial/bronchial arterial hypoxaemia, worsened with acidemia

Focus on:

- Reducing pulmonary vascular tone
- Judicious use of pulmonary vasodilators
- Awareness of the effects of positive pressure ventilation

Care Association

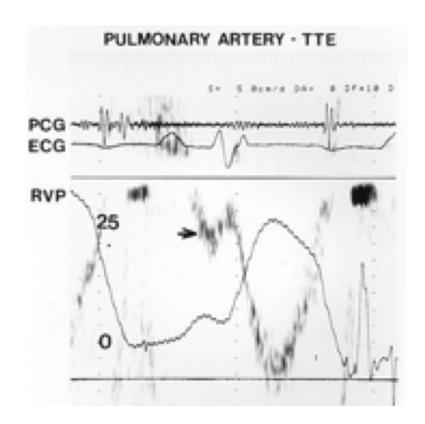
Potentially injurious effects of ventilation

Tavazzi G, ESICM 2014

Circulation

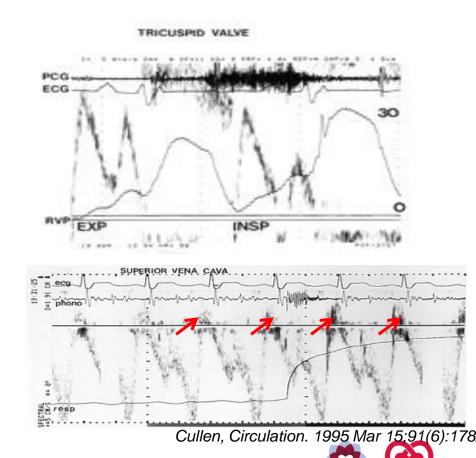
Articles

Characterization of Right Ventricular Diastolic Performance After Complete Repair of Tetralogy of Fallot


Restrictive Physiology Predicts Slow Postoperative Recovery

Presented in part at the 65th Scientific Sessions of the American Heart Association, New Orleans, La. November 1992.

Seamus Cullen; Darryl Shore; Andrew Redington


From the Royal Brompton Hospital and The National Heart and Lung Institute, London, UK.

Correspondence to Dr Andrew Redington, Royal Brompton Hospital and The National Heart and Lung Institute, Sydney Street, London 5W3 6NP, UK.

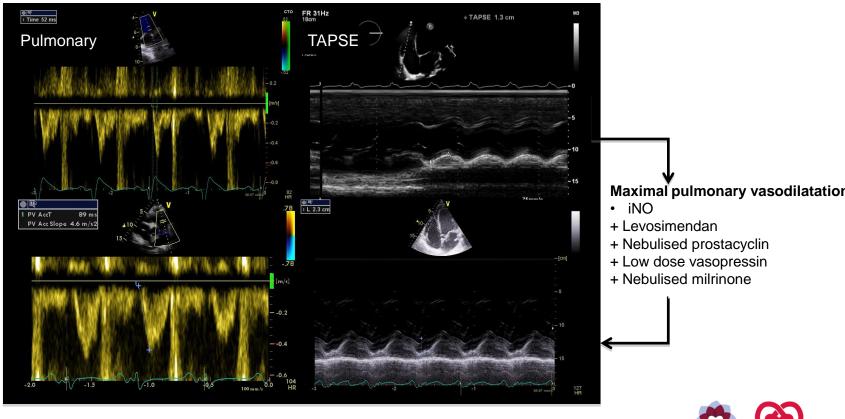
Effects of IPPV in RV restrictive physiology

- Inspiration increases E/A ratio
- Abolishes PA diastolic wave
- Relative contribution of "restrictive" antegrade a wave to forward flow:
 - Inspiration: 7 ±8%
 - Expiration: 22 <u>+</u>10%
- 43% patients with SARF
- Inducible by IPPV

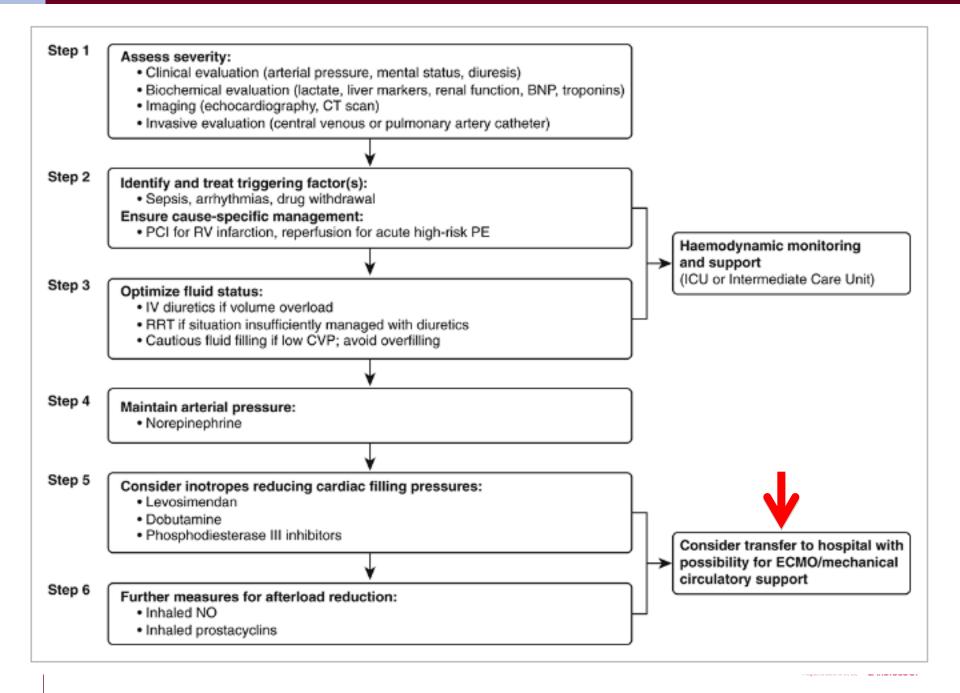
Cardiovascular

Care Association

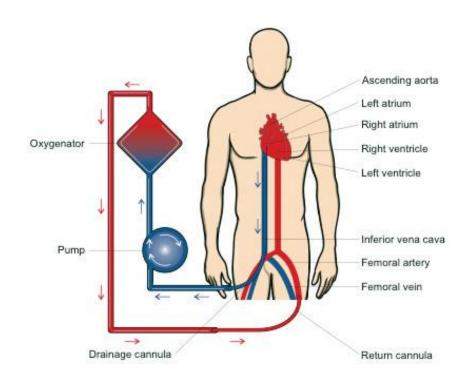
Pulmonary vasodilators


- None approved for treatment of RV failure in critically ill
- All have systemic & pulmonary effects
- Systemic administration may alter V/Q mismatch, and worsen hypoxaemia

Currently available pulmonary vasodilator medications


Name	Drug Class	Action	Route of Administration	Terminal Half-Life	
Ambrisentan	Endothelin receptor antagonist	Blocks endothelin receptor A	Oral	15 h	
Bosentan	Endothelin receptor antagonist	Blocks endothelin receptor A and B	Oral	5.4 h	
Macitentan	Endothelin receptor antagonist	Blocks endothelin receptor A	Oral	14–18 h	
Sildenafil	Phosphodiesterase type-5 inhibitor	Slows metabolism of intracellular cGMP	Oral or intravenous	4 h orally	
Tadalafil	Phosphodiesterase type-5 inhibitor	Slows metabolism of intracellular cGMP	Oral	17.5 h	
Epoprostenol	Prostacyclin	Increases intracellular cAMP	Intravenous or inhaled*	<6 min	
Treprostinil	Prostacyclin derivative	Increases intracellular cAMP	Intravenous, subcutaneous, inhaled, or oral	4 h	
Iloprost	Prostacyclin derivative	Increases intracellular cAMP	Inhaled	20-30 min	
Nitric oxide	Soluble guanylate cyclase stimulator	Increases intracellular cGMP	Inhaled	Seconds	
Riociguat	Soluble guanvlate cyclase stimulator	Increases intracellular cGMP	Oral	7–12 h	

Harjola et al., Eur J Heart Failure 2016


Right heart afterload

Peripheral VA-ECMO

23Fr venous, 19-21Fr arterial (Legmo: 10-12Fr)

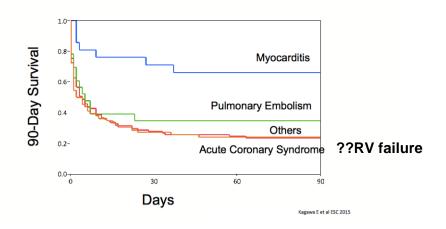
Cardiac (or cardiopulmonary) support Percutaneous, rapid access Awake or ventilated

Up to 8L/min – high, stable flow, 2-4 weeks

Better kit – transportation and monitoring Cheaper than Tandem Heart and Impella Expanding indications

Guidelines?

European Heart Journal (2014) 35, 2541-2619 doi:10.1093/eurheartj/ehu278


ESC/EACTS GUIDELINES

2014 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

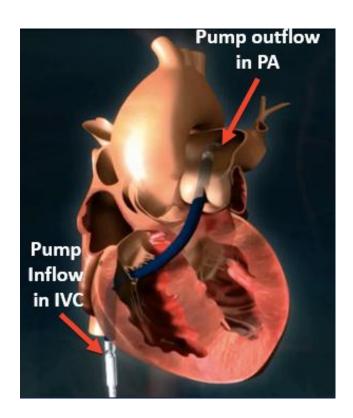
IABP insertion should be considered in patients with haemodynamic instability/cardiogenic shock due to mechanical complications.	lla	С
Patients with mechanical complication after acute myocardial infarction require immediate discussion by the Heart Team.	ı	С
Short-term mechanical circulatory support in ACS patients with cardiogenic shock may be considered.	ПР	С

Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device.

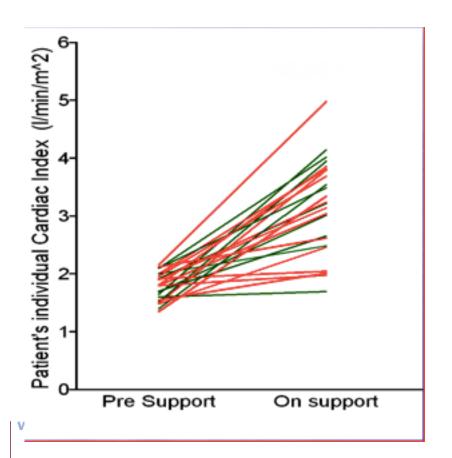
Anderson MB¹, Goldstein J², Milano C³, Morris LD⁴, Kormos RL⁵, Bhama J⁵, Kapur NK⁶, Bansal A⁷, Garcia J⁸, Baker JN⁸, Silvestry S⁹, Holman WL¹⁰, Douglas PS¹¹, O'Neill W¹².

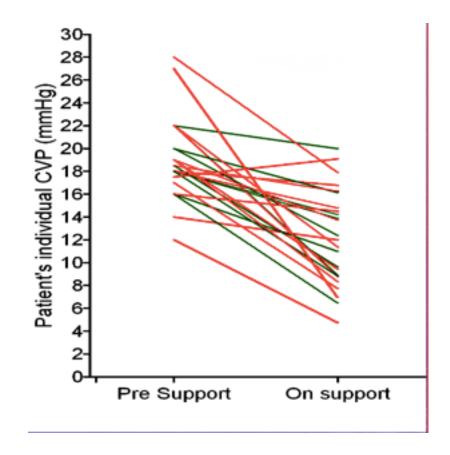
METHODS: Thirty patients with RVF refractory to medical treatment received the Impella RP device at 15 United States institutions. The study population included 2 cohorts: 18 patients with RVF after left ventricular assist device (LVAD) implantation (Cohort A) and 12 patients with RVF after cardiotomy or myocardial infarction (Cohort B). The primary end point was survival to 30 days or hospital discharge (whichever was longer). Major secondary end points included indices of safety and efficacy.

Transfemoral insertion

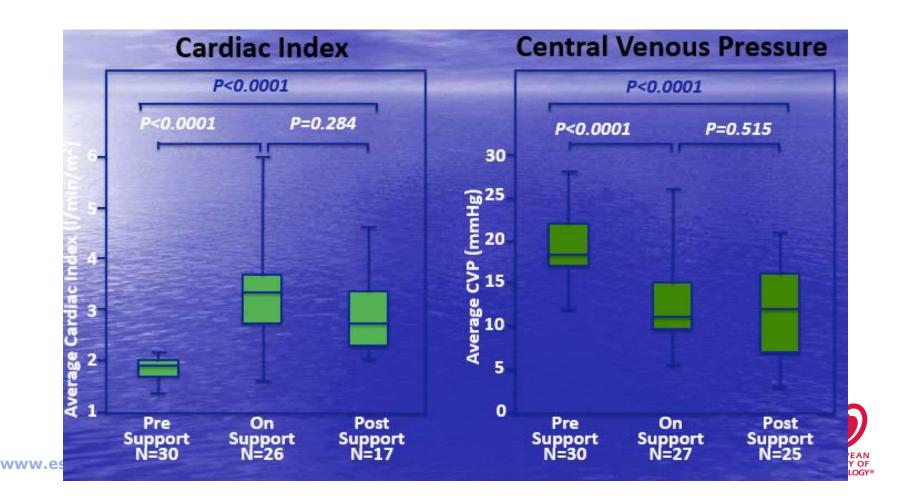

3D shaped cannula

22Fr motor housing Pump on 1Fr catheter

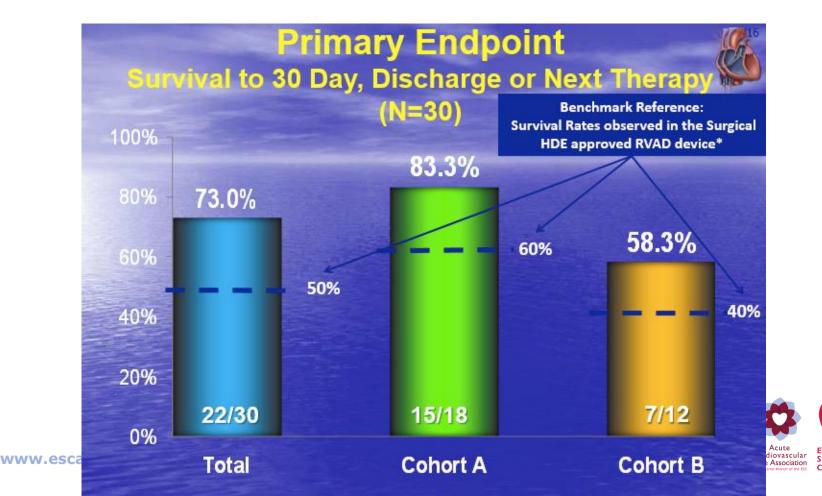

4L/min @33,00rpm

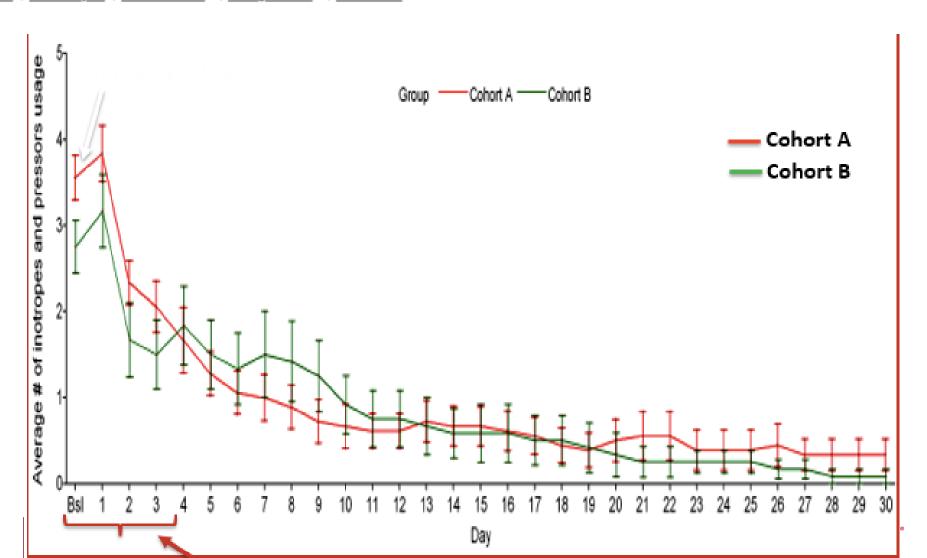

ACT160-180

COHORT B: 58.3% survival (cohort predicted survival 40%)



Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device.




Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device.

Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device.

Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device.

Statement from ESC

Statement

Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on **Pulmonary Circulation and Right Ventricular** Function of the European Society of Cardiology

Veli-Pekka Harjola ☑, Alexandre Mebazaa, Jelena Čelutkienė, Dominique Bettex, Hector Bueno, Ovidiu Chioncel, Maria G. Crespo-Leiro, Volkmar Falk, Gerasimos Filippatos, Simon Gibbs, Adelino Leite-Moreira, Johan Lassus, Josep Masip, Christian Mueller, Wilfried Mullens, Robert Naeije, Anton Vonk Nordegraaf, John Parissis, Jillian P. Riley, Arsen Ristic, Giuseppe Rosano, Alain Rudiger, Frank Ruschitzka, Petar Seferovic, Benjamin Sztrymf, Antoine Vieillard-Baron, Mehmet Birhan Yilmaz, Stavros Konstantinides

Pages 226-241

First published: 15 March 2016 Full publication history

Conclusions

Acute RV failure is a complex clinical scenario and its appropriate management requires an understanding of RV anatomy and mechanics, rapid identification and treatment of underlying causes, and knowledge of supportive treatment measures. Many uncertainties remain, and there is a need for randomized trials to investigate the efficacy and safety of pharmacological and mechanical interventions for the treatment of acute RV failure.

Many interventions seem physiologically/intuitively sensible – but that doesn't mean they are right

Sir Iain Chalmers, co-founder Cochrane collaboration, BBC Radio 4, 2013