ESC Guidelines for the Diagnosis and Treatment of Acute Heart Failure

Eur Heart J 2005;26:384-416

Task Force Members Markku S. Nieminen (Finland), MD, PhD, FESC Chairperson Kenneth Dickstein (Norway), MD, PhD, FESC Co-author Michael Böhm, Germany José Lopez-Sendon, Spain Martin Cowie, UK Alexandre Mebazaa, France Helmut Drexler, Germany Marco Metra, Italy Gerasimos S. Filippatos, Greece Andrew Rhodes, UK Guillaume Jondeau, France Karl Swedberg, Sweden, Yonathan Hasin, Israel

European Heart Journal (2005) 26, 384-416 doi:10.1093/eurheartj/ehi044

ESC Guidelines

Executive summary of the guidelines on the diagnosis and treatment of acute heart failure

The Task Force on Acute Heart Failure of the European Society of Cardiology

Endorsed by the European Society of Intensive Care Medicine (ESICM)

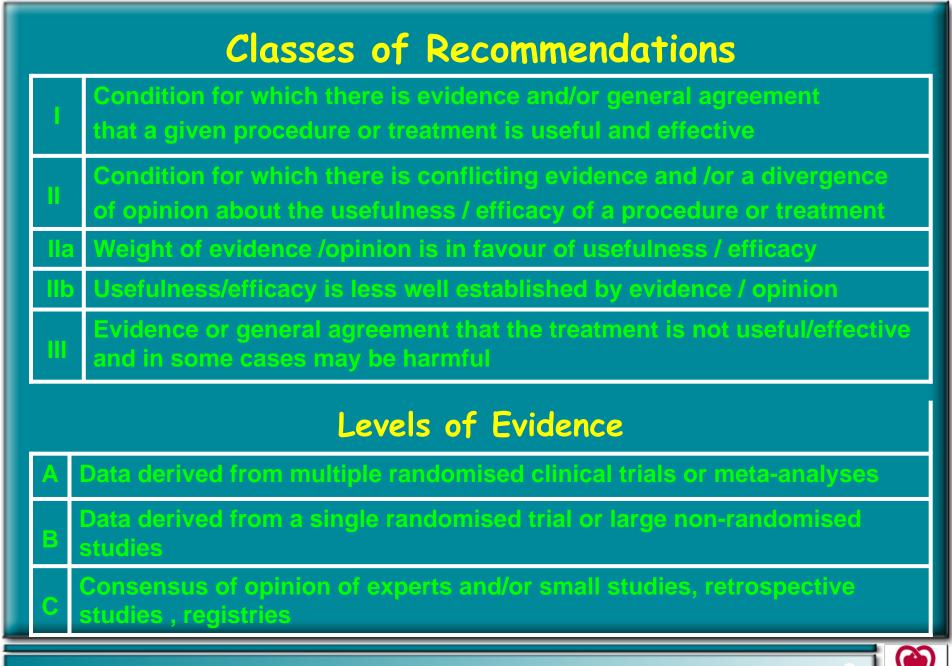
Authors/Task Force Members, Markku S. Nieminen, Chairperson* (Finland), Michael Böhm (Germany), Martin R. Cowie (UK), Helmut Drexler (Germany), Gerasimos S. Filippatos (Greece), Guillaume Jondeau (France), Yonathan Hasin (Israel), José Lopez-Sendon (Spain), Alexandre Mebazaa[†] (France), Marco Metra (Italy), Andrew Rhodes[†] (UK), Karl Swedberg (Sweden)

ESC Committee for Practice Guidelines (CPG), Silvia G. Priori (Chairperson) (Italy), Maria Angeles Alonso Garcia (Spain), Jean-Jacques Blanc (France), Andrzej Budaj (Poland), Martin R Cowie (UK), Veronica Dean (France), Jaap Deckers (The Netherlands), Enrique Fernandez Burgos (Spain), John Lekakis (Greece), Bertil Lindahl (Sweden), Gianfranco Mazzotta (Italy), João Morais (Portugal), Ali Oto (Turkey), Otto A. Smiseth (Norway)

Document Reviewers, Maria Angeles Alonso Garcia (Co-CPG Review Coordinator) (Spain), Kenneth Dickstein (Co-CPG Review Coordinator) (Norway), Anibal Albuquerque (Portugal), Pedro Conthe (Spain), Maria Crespo-Leiro (Spain), Roberto Ferrari (Italy), Ferenc Follath (Switzerland), Antonello Gavazzi (Italy), Uwe Janssens (Germany), Michel Komajda (France), João Morais (Portugal), Rui Moreno (Portugal), Mervyn Singer (UK), Satish Singh (UK), Michal Tendera (Poland), Kristian Thygesen (Denmark)

Contents

Introduction Definition, aetiology and mechanisms Classifications Diagnostic algorithm Laboratory tests Treatment goals Initial management Invasive monitoring Specific pharmacological treatments Diuretics ·Vasodilators ·Inotropic agents Treatment of rhythm disturbances Conditions requiring surgical management


Introduction

AHF Guidelines:

- provide an approach to diagnosis and treatment
- describe the rationale for therapeutic decisions

The recommendations prepared by the Acute Heart Failure Task Force were approved by the Committee for Practice Guidelines (CPG) of the ESC and the European Society of Intensive Care Medicine (ESICM).

ESC Guidelines on the Diagnosis and Treatment of Acute Heart Failure

EUROPEAN SOCIETY OF

Definitions and Aetiology

- AHF is defined as the rapid onset of symptoms and signs, secondary to abnormal cardiac function
- Cardiac dysfunction can be related to systolic or diastolic dysfunction, to abnormalities in cardiac rhythm or to preload and afterload mismatch
 It is often life threatening and
 - requires urgent treatment

Definitions and Aetiology (1) Decompensation of chronic heart failure (2) Acute coronary syndromes (a) AMI / UAP / ischaemic dysfunction, (b) mechanical complications of AMI (c) right ventricular infarction (3) Hypertensive crisis (4) Acute arrhythmia (VT, VF, AF, SVT)

Definitions and Aetiology (5) Cardiomyopathy and myocarditis (6) Valvular regurgitation (7) Aortic stenosis (8) Acute myocarditis (9) Cardiac tamponade (10) Aortic dissection (11) Post-partum cardiomyopathy

Definitions and Aetiology

(11) Non cardiovascular precipitating factors

- (a) poor compliance for medical treatment
- (b) volume overload
- (c) infections, especially pneumonia, septicaemia
- (d) severe brain injury
- (e) major surgery
- (f) reduced renal function
- (g) asthma
- (h) drug abuse
- (i) alcohol abuse
- (12) High output syndromes
 (a) septicaemia
 (b) thyrotoxicosis
 (c) anaemia
 (d) shunt syndromes

Classification

Patients with AHF present with six distinct clinical conditions

Clinical Conditions

<u>Acute</u> <u>decompensation of</u> <u>CHF</u>: Signs and symptoms are mild

- Heart rate +/-
- SBP +/-
- <u>C</u>I +/-
- · PCWP +
- Diuresis +
- Hypoperfusion +/-

<u>AHF with pulmonary</u> <u>oedema</u>: severe respiratory distress with rales over the lungs

- Heart rate +
- SBP +/-
- *C*I -
- PCWP ++
- Diuresis +
- Hypoperfusion +/-

Clinical Conditions Cardiogenic shock

Low output syndrome: reduced BP, low urine output, tissue hypoperfusion

- Heart rate +
- SBP -
- *C*I -
- · PCWP +
- · Diuresis -
- · Hypoperfusion +

<u>Severe Cardiogenic</u> <u>shock</u>: low BP, organ hypoperfusion, anuria

- Heart rate ++
- SBP --
- *C*I --
- · PCWP ++
- · Diuresis --
- Hypoperfusion ++

Clinical Conditions

<u>Hypertensive AHF</u>: Signs and symptoms of AHF with high BP and preserved LVEF

- Heart rate +
- · SBP ++
- · CI +/-
- · PCWP +
- Diuresis +/-
- Hypoperfusion +/-

Clinical Conditions

High output failure: signs of increased cardiac output with elevated heart rate with warm periphery

- Heart rate +
- SBP +/-
- <u>CI</u> +
- PCWP +/-
- Diuresis +
- Hypoperfusion +/-

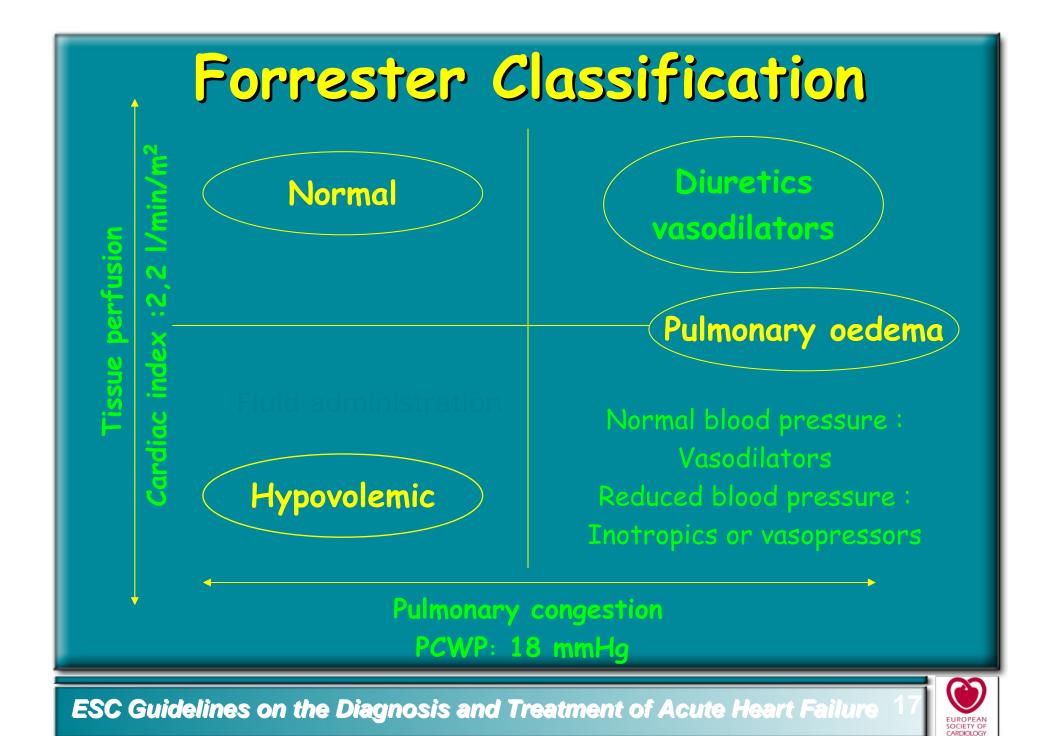
<u>Right heart failure</u>:

low output syndrome with increased JVP, tender hepatomegaly and hypotension

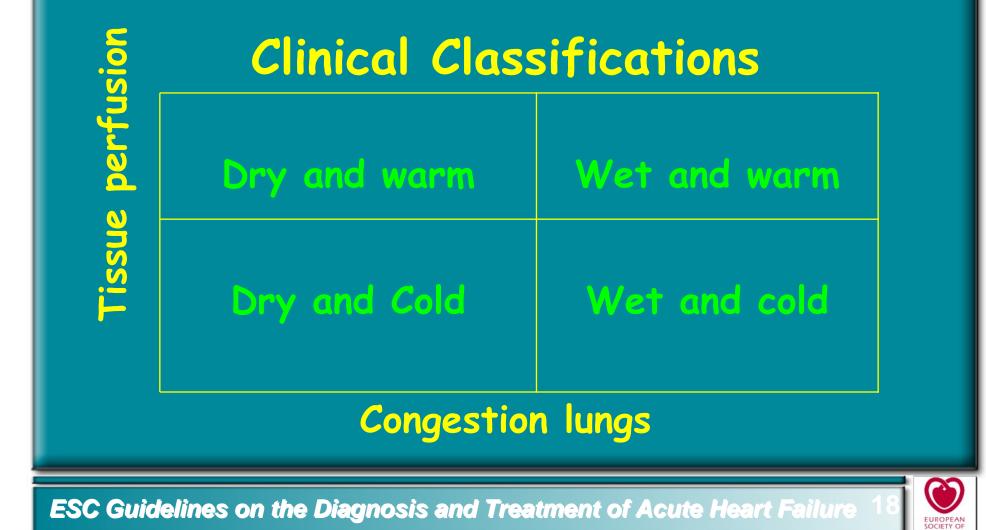
- Heart rate +/SBP -
- · CI -
- · PCWP -
- Diuresis +/-
- Hypoperfusion +/-

Killip Classification

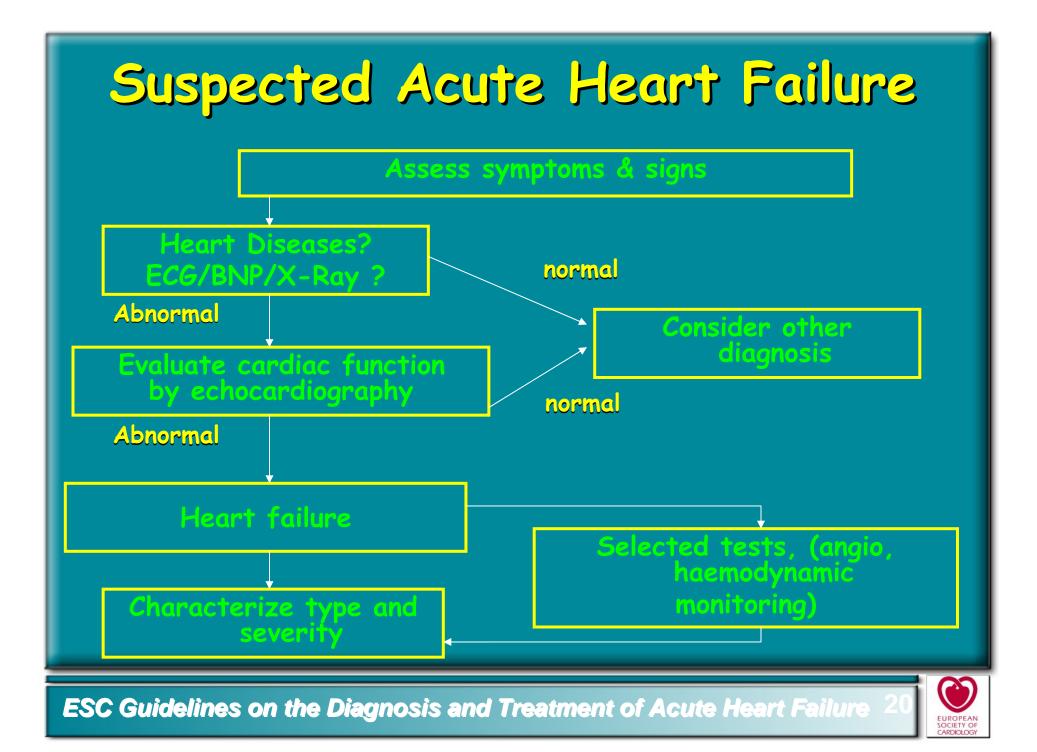
A clinical estimate of the severity of LV dysfunction in the treatment of AMI

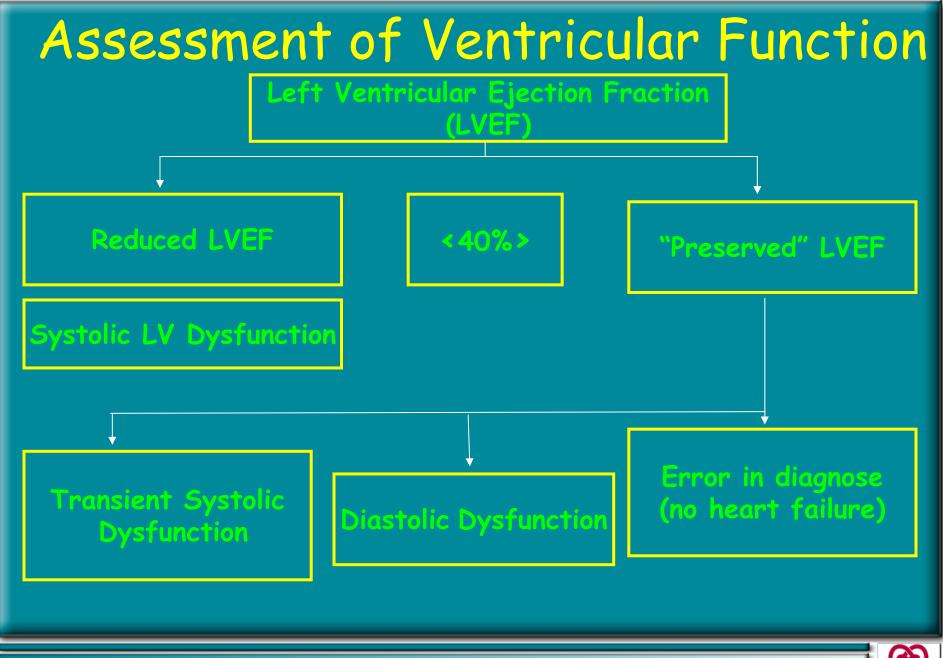

<u>Class I</u> – No heart failure. No clinical signs of cardiac decompensation.

<u>Class II</u> – Heart failure. Diagnostic criteria include rales, 53 gallop and pulmonary venous hypertension. Pulmonary congestion with wet rales up to half of the lung fields.


<u>Class III</u> - Severe heart failure. Pulmonary edema with rales in all lung fields.

<u>Class IV</u> - Cardiogenic shock. Signs include hypotension (systolic BP \leq 90 mmHg), and evidence of peripheral vasoconstriction such as oliguria, cyanosis and diaphoresis.


Evaluation of acutely decompensated chronic heart failure



Diagnostic algorithm

- · Clinical assessment
- Patient history
- · ECG
- X-ray
- · O2 saturation
- · CRP, electrolytes, creatinine
- · BNP/NT-proBNP, troponin
- Echocardiography in all patients as soon as possible

Laboratory tests

Routine haematology	always
Platelet count	always
Creatinine/urea	always
Electrolytes	always
Blood Glucose	always
Troponin (CKMB)	always
Arterial blood gases	always
CRP	always
D-dimer	always
Transaminases	consider
Urinanalysis	consider
BNP or NT-proBNP	consider
INR	if anticoagulated or severe

ESC Guidelines on the Diagnosis and Treatment of Acute Heart Failure

HF

Treatment goals

- The goals in the treatment of heart failure are to improve clinical symptoms and outcomes
- Management strategy should be based on clinical, laboratory and haemodynamic findings

Goals of treatment of the patient with AHF

<u>Clinical</u>

- Symptoms (Dysphoed
- and/or fatigue)
- Clinical signs
- Body weight
- Diuresis
- Oxygenation
- <u>Laboratory</u>
- Serum electrolytes normal <u>Tolerability</u>
- BUN
- Plasma BNP therapy Blood glucose normalisation effects

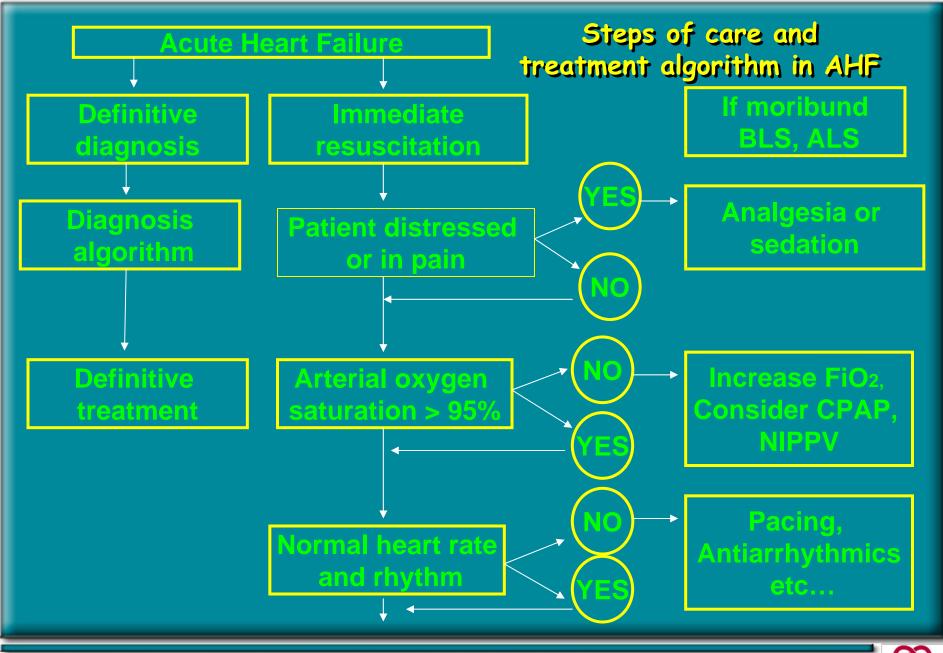
Haemodynamic PCWP to <18 mmHg CO and/or SV Outcome Length of stay in the ICU Duration of hospitalization Time to hospital re-admission Mortality Tolerability

Low rate of withdrawal from therapy Low incidence of adverse effects

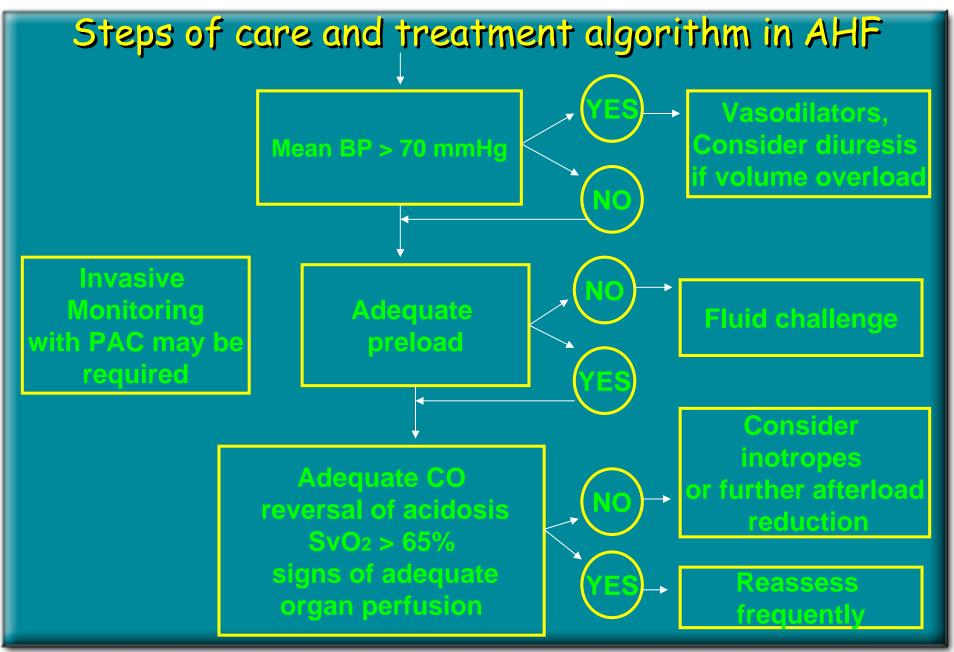
- Instrumentation and choice of therapy are carried out according to clinical priorities.
- Resuscitative measures may be required with life threatening complications.
- ECG and <u>SpO2</u>, an iv line and arterial line can be useful for monitoring.

- Correct hypoxia and increase cardiac output, renal perfusion, sodium excretion and urinary output.
- Ultimately ultrafiltration or dialysis may be required.

 Devices may be indicated such as an intraaortic balloon pump, assisted ventilation, or a circulatory assist device as temporary measure or as bridge for heart transplantation.


- Oxygen by face mask or CPAP (SpO2 target >95%)
- iv morphine (2.5-5 mg prn)
- iv loop diuretic therapy
- Vasodilatation by nitrate or nitroprusside
- Inotropic support with severe AHF or hypotension
- iv fluids if low filling pressure

 Concomitant metabolic conditions treated according to the diagnostic work-up and laboratory status



 Patients with ACS or serious mechanical cardiac disorders should proceed rapidly to angiography and catheterisation for therapeutic measures including PCI or surgery.

INVASIVE MONITORING

Invasive haemodynamic monitoring may assist in decision making with volume loading, diuretics and/or vasoactive agents in severe AHF.

Haemodynamic findings

CI L/min/m ²	Decreased	Decreased	Decreased	Decreased	Maintained
PCWP mmHg	Low	High or Normal	High	High	High
SBP mmHg		>85	<85	>85	
Outline of therapy	Fluid loading	Vasodilator (nitroprusside, NTG) fluid loading may become necessary	Consider inotropic agents (dobutamine, dopamine) and iv diuretics	Vasodilators (nitroprusside NTG) and iv diuretics and consider inotrope (dobutamine, levosimendan, PDEI)	iv diuretics If SBP low, vasocon- structive inotropes

Specific Pharmacological Treatment

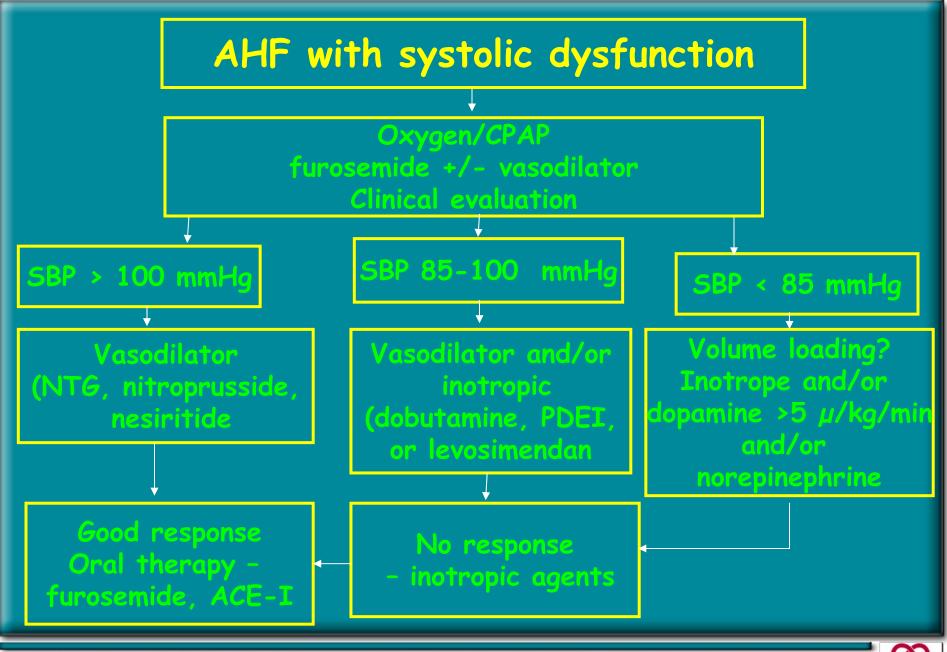
Requires an understanding of the pharmacodynamics and pharmacokinetics of each drug and its potential interactions, side-effects, and toxicity.

Diuretics

- Patients will usually require diuretics to treat pulmonary and peripheral congestion
- Agents should usually be administered iv in the acute phase
- Resistance to diuretics is a common problem

Diuretic treatment

Severity of fluid retention	Diuretics	Dose (mg)	Comments
	Furosemide, or	20-40	Oral or iv according to clinical symptoms
Moderate	Bumetanide, or	0.5-1.0	Titrate dose according to clinical response
	Torasemide	10-20	Monitor Na+, K+, creatinine and blood pressure
	Furosemide, or	40-100	iv
Severe	Furosemide infusion	5-40 mg/h	Better than very high bolus doses
	Bumetanide, or	1-4	Orally or iv
	Torasemide	20-100	orally


Severity of fluid retention	Diuretics	Dose (mg)	Comments
	Add HCTZ, or	25-30 twice daily	Combination with loop diuretic better than very high dose of loop diuretic alone
Refractory to loop diuretics	Metolazone, or	2.5-10 once daily	Metolazone more potent if creatinine clearance < 30 ml/min
	Spironolactone	25-30 once daily	Spironolactone best choice if patient not in renal failure and normal or low serum K+
In case of alkalosis	Acetazolamide	0.5	iv.
Refractory to loop diuretics and thiazides	Add dopamine for renal vasodilation, or dobutamine as an inotropic agent		Consider ultrafiltration or haemodialysis of co-existing renal failure and adequate BP

Managing resistance to diuretics

- Restrict Na+/water intake and follow electrolytes.
- Volume repletion in cases of hypovolaemia
- Increase dose and/or frequency of administration of diuretics
- Use iv administration as bolus, or iv infusion.
- Combine diuretics
 - loop diuretic + HCTZ
 - loop diuretic + spironolactone
 - loop diuretic + metolazone
- Combine diuretic therapy with dopamine, or dobutamine
- Reduce the dose of ACE-inhibitor or ARB or use very low doses
- Consider ultrafiltration

Vasodilator	Glyceryl Trinitrate, 5-mononitrate	
Indication	AHF, when blood pressure adequate	
Dosing	Start 20 μ g/min, increase to 200 μ g/min	
Main side-effects	Hypotension, headache	
Other	Tolerance on continuous use	
Vasodilator	Isosorbide dinitrate	
Indication	AHF, when blood pressure adequate	
Indication Dosing	AHF, when blood pressure adequate Start with 1mg/h increase to 10mg/h	

Vasodilator	Nitroprusside	
Indication	Hypertensive crisis, cardiogenic shock combined with inotropes	
Dosing	0.03 µg/kg/min	
Main side-effects	Hypotension, isocyanate toxicity	
Other	Drug is light sensitive	

Vasodilator	Nesiritide (not approved by EMEA)	
Indication	Acute decompensated heart failure,	
Dosing	Bolus 2 µg/kg + infusion 0.015-0.03 µg/kg/min	
Main side-effects	Hypotension	

 Inotropic Agents
 Are often required in patients with moderate or severe heart failure and hypotension.

 Tachycardia and vasoconstriction are frequently observed.

	Bolus	Infusion rate
Dobutamine	No	2-20 μg/kg/min β+)
Dopamine	No	< 3 μg/kg/min : renal effect (δ+) 3-5 μg/kg/min : inotropic (β+) > 5μg/kg/min (β+), vasopressor (α+)
Milrinone	25-75µg/kg over 10-20 min	0.375-0.75 µg/kg/min
Enoximone	0.25-0.75 mg/kg	1.25-7.5 μg/kg/min
Levosimendan	12-24 μg/kg over 10 min	0.1 μ g/kg/min which can be decreased to 0.05 or increased to 0.2 μ g/kg/min
Norepinephrine	NO	0.2-1.0 µg/kg/min
Epinephrine	1 mg can be given iv at resuscitation, may be repeated after 3-5 min, endotracheal route is not favoured	0,05-0,5 µg/kg/min

Cardiac disorders and AHF requiring surgical treatment

- Cardiogenic shock after AMI patients with multi vessel CAD
- Post-infarction VSR
- Free wall rupture
- · Acute decompensation with valve disease
- Aortic aneurysm or aortic dissection into the pericardial sac

- Acute mitral regurgitation from:
 - Ischaemic papillary muscle rupture
 - Ischaemic papillary muscle dysfunction
 - Myxomatous chordal rupture
 - Endocarditis
 - Trauma
- · Acute aortic regurgitation from :
 - Endocarditis
 - Aortic dissection
 - Closed chest trauma
- · Ruptured aneurysm of the sinus of Valsalva
- Acute decompensation of chronic cardiomyopathy requiring support by mechanical assist devices.

Treatment of rhythm disturbances

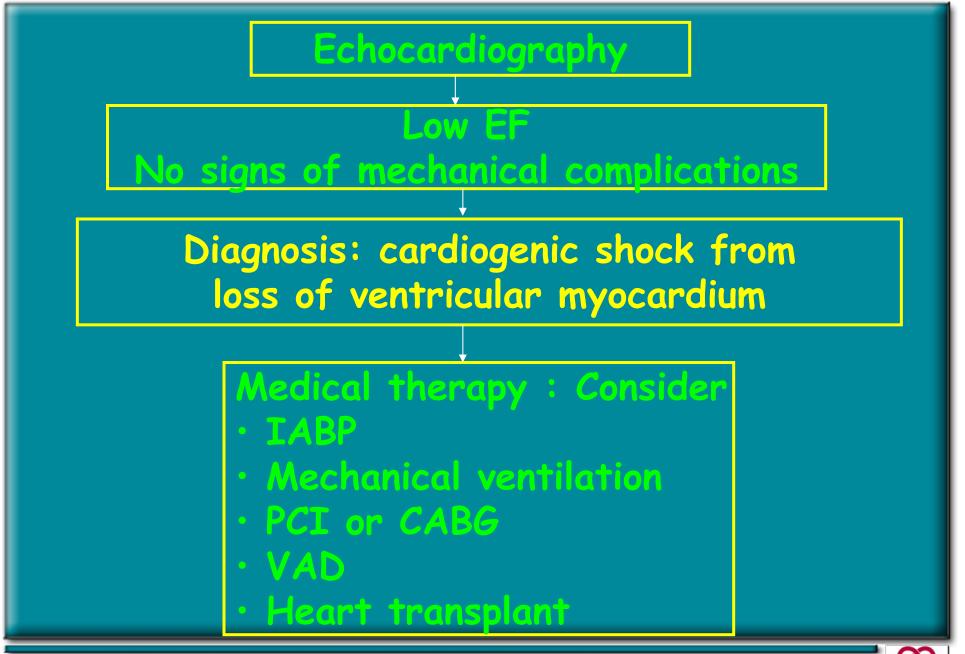
 Rhythm disturbances may frequently precipitate or aggravate episodes of decompensation and should be treated aggressively.

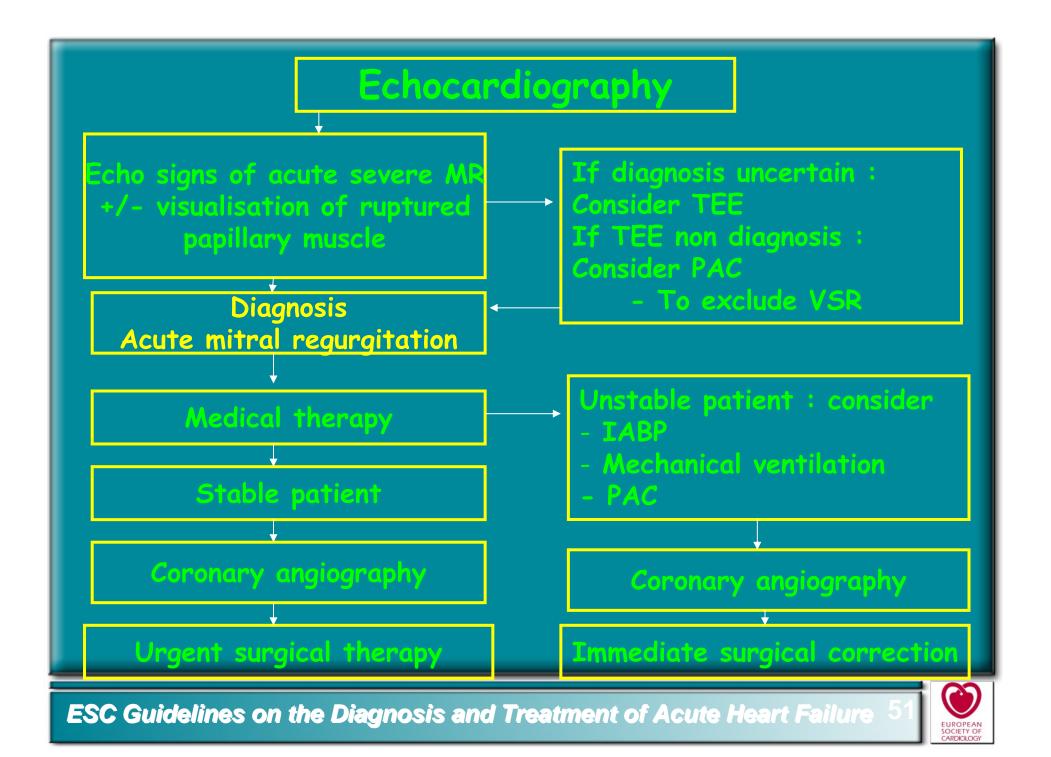
Treatment of arrhythmias in acute heart failure
VF or pulseless VT: Defibrillate with 200-300J. If refractory, inject epinephrine 1 mg or vasopressin 40 IU and/or amiodarone 150-300 mg.

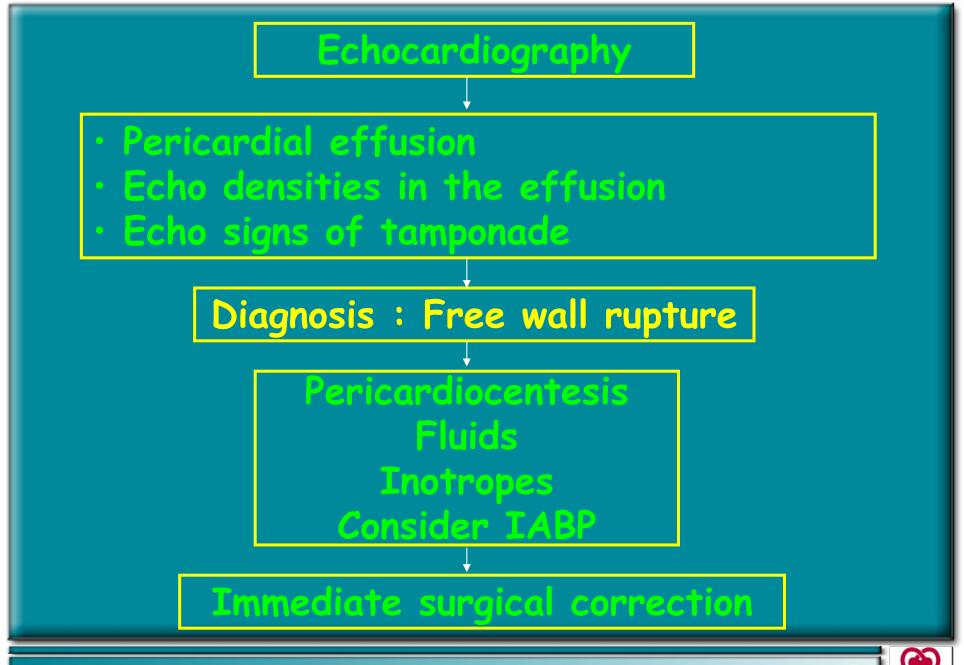
• VT:

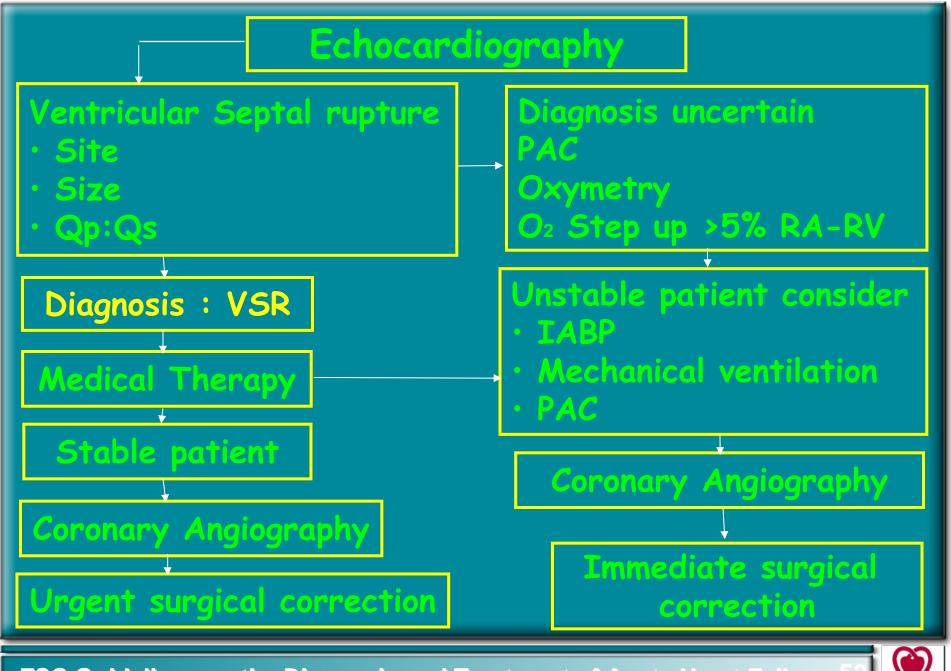
If unstable cardiovert. If stable, amiodarone or lidocaine may achieve medical cardioversion.

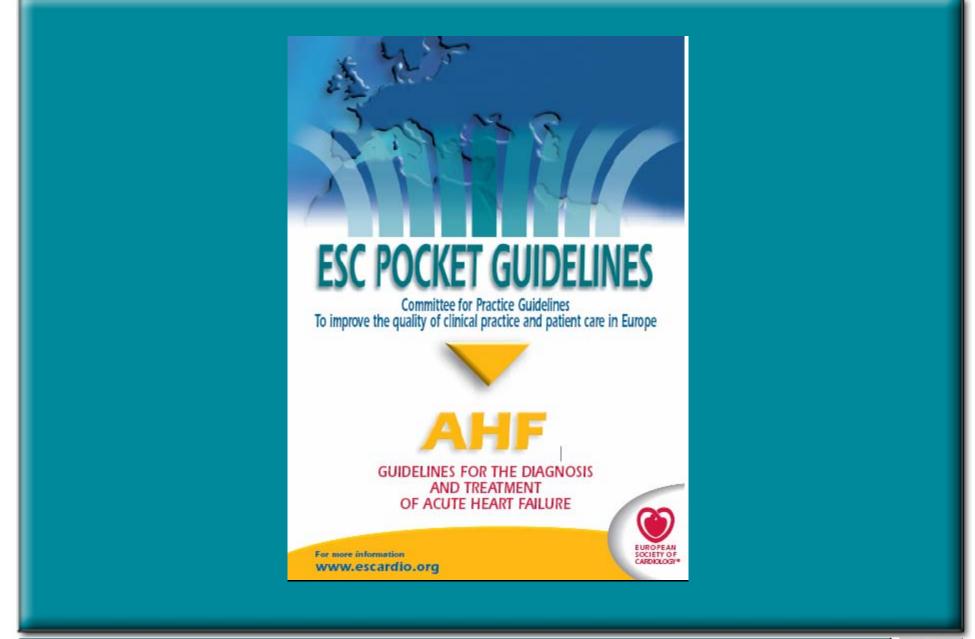
- Sinus tachycardia or SVT:
 Use B-blocking agent when haemodynamically stable: metoprolol 5 mg iv as a slow bolus.
 Adenosine may be used to slow AV conduction or to cardiovert re-entry tachycardia
- Atrial fibrillation or flutter: Cardiovert if possible. Digoxin 0.5-1.0 mg iv, β- blocking agent, or iv amiodarone
 (300 mg/30 min followed 50-100 mg/h), may be used to slow AV conduction. Amiodarone may induce medical cardioversion without compromising haemodynamics. Patients should be anticoagulated.


• Bradycardia: Atropine 0.25-0.5 mg iv to total of 1-2 mg. Isoproterenol iv from 2-12 µg/min. If bradycardia persists, transcutaneous or transvenous pacing. Theophylline may be used with atropineresistant bradycardia with bolus of 0.25-0.5 mg/kg and infusion at 0.2-0.4 mg/kg/h.


Conditions requiring surgical management


Specific conditions may require surgical management. These cardiac disorders must be detected promptly. The indications for IAPB, LVAD or cardiac transplantation are discussed in the executive summary of these guidelines.





• The patient with AHF may recover to their clinical status or deteriorate depending on the management, aetiology and precipitating mechanisms.

•Appropriate management of chronic HF is required after stabilisation. Adequate follow-up strategy should be planned.

•Treatment should be performed according to the principles introduced in these guidelines and in the ESC task force guidelines for the diagnosis and treatment of chronic heart failure [European Heart Journal, 2005;26:1115-1140].

