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Introduction

Diastolic heart failure has emerged over the last 10 years
as a separate clinical entity[1–6]. Diastolic heart failure
accounts for approximately one third of all heart failure
cases, especially in an elderly population, and its natural
history, with an annual mortality rate of 8%, is more
benign than other forms of heart failure with an annual
mortality of 19%[7–12]. Because of its rising incidence in
ageing Western populations and because of its different
prognosis[13], specific treatment options for patients suf-
fering from diastolic heart failure are currently being
tested in large randomized trials. A need has therefore
grown to establish precise criteria for the diagnosis of
diastolic heart failure[14,15].

Such diagnostic criteria should: (1) reflect under-
lying pathophysiological mechanisms; (2) be readily
obtainable using modern diagnostic tools; (3) be appli-
cable to different cardiac diseases featuring diastolic
heart failure. The present report of the European
Study Group on Diastolic Heart Failure proposes a
definition of primary diastolic heart failure. Primary
diastolic heart failure does not include diastolic left
ventricular dysfunction in the presence of systolic car-
diac failure[16–19]. Diagnostic criteria satisfying the
originally proposed definition of diastolic heart failure
will be established for most of the modern cardiac
investigations and imaging techniques. Finally, these
diagnostic criteria for diastolic heart failure will
be applied to diseases frequently characterized by
diastolic heart failure. To avoid low specificity of the
diagnostic criteria, cut-off values of indices were set at
the 95% confidence interval of the mean value of
the index observed in a normal population. When
age-related changes of an index have been reported,
cut-off values are given for different age (y, years)
groups (e.g. ¦30y; 30–50 y; §50y) indicated as
subscripts to the index.

How to establish the diagnosis of
diastolic heart failure?

A diagnosis of primary diastolic heart failure requires
three obligatory conditions to be simultaneously satis-
fied: (1) presence of signs or symptoms of congestive
heart failure; (2) presence of normal or only mildly
abnormal left ventricular systolic function; (3) evidence
of abnormal left ventricular relaxation, filling, diastolic
distensibility or diastolic stiffness (Table 1).

Presence of signs or symptoms of congestive
heart failure

Signs or symptoms of congestive heart failure include
evidence of raised left atrial pressure, such as exertional
dyspnoea, orthopnoea, gallop sounds, lung crepitations
and pulmonary oedema. Exercise intolerance caused by
exertional dyspnoea related to pulmonary congestion is
frequently the earliest event in diastolic heart failure[20].
This form of exercise intolerance does not incorporate
exercise-induced muscular fatigue, which results from
impaired skeletal muscle metabolism and usually accom-
panies systolic heart failure[6]. A low peak exercise
oxygen consumption (<25 ml . kg"1 . min"1), eventu-
ally corrected for age and gender[21], on a progressive
bicycle ergometer exercise test (20 W+Ä10 W at 1 min
intervals[22]) provides objective evidence of reduced ex-
ercise tolerance[11] and allows for objective classification
of patients in terms of functional impairment[23].

Presence of normal or mildly reduced left
ventricular systolic function

Because of the frequent occurrence of diastolic left
ventricular dysfunction in patients with systolic left
ventricular dysfunction and congestive cardio-
myopathy[24–26], a diagnosis of diastolic heart failure
requires the presence of normal or only mildly abnormal
left ventricular systolic function. A frequently used
criterion[7,8,11] is a baseline left ventricular ejection
fraction of at least 45%. As left ventricular relax-
ation depends on end-systolic load and volume[27–30],
this criterion needs to be implemented when the left
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ventricular end-diastolic internal dimension index
(LVEDIDI <3·2 cm . m"2)[31] is normal or when the
left ventricular end-diastolic volume index (LVEDVI
<102 ml . m"2)[32] is normal, in order to exclude dias-
tolic left ventricular dysfunction secondary to high
end-systolic load and volume.

Evidence of abnormal left ventricular
relaxation, filling, diastolic distensibility and

diastolic stiffness

Such evidence can consist of: (1) slow isovolumic left
ventricular relaxation and/or (2) slow early left ven-
tricular filling and/or (3) reduced left ventricular dias-
tolic distensibility and/or (4) increased left ventricular
chamber stiffness or increased myocardial muscle stiff-
ness. From the viewpoint of cardiac muscle physiol-
ogy[33], diastole of left ventricular myocardium consists
only of diastasis and the atrial contraction phase, and
diastolic heart failure can therefore only be inferred
from evidence of decreased left ventricular diastolic
distensibility or increased left ventricular diastolic stiff-
ness[6]. This theoretical approach is hampered by its
limited clinical applicability as it usually requires
invasive investigations to establish the diagnosis of

diastolic heart failure. Because left ventricular relaxation
and filling affect left ventricular diastolic distensibility
(=the position on a pressure–volume plot of the left
ventricular diastolic pressure–volume relation), diagnos-
tic evidence for diastolic heart failure can also be ob-
tained from analysis of left ventricular relaxation and
filling[34], which can be performed more easily in clinical
practice using modern non-invasive imaging techniques.

Slow isovolumic left ventricular relaxation
The rate of isovolumic left ventricular pressure decay is
intimately coupled to timing, myocardial loading[27–30,35]

and segmental coordination[36,37]. Timing refers to the
time interval from the Q wave on the ECG to the onset
of left ventricular relaxation[6,28]. Commonly used
indices are:
(1) peak negative left ventricular dP/dt (LVdP/dtmin): a
value of LVdP/dtmin <1100 mmHg . s"1 is considered
indicative of slow isovolumic left ventricular relaxation
in man (normal control value: 1864&390 ms; mean&
SD[40]). A significantly lower value has been reported
in hypertrophic cardiomyopathy (998&223 ms) and in
congestive cardiomyopathy (1060&334 ms) but not in
coronary artery disease or hypertensive heart disease[40].
(2) isovolumic relaxation time (IVRT): the time
interval between aortic valve closure and mitral valve
opening has been measured using transmitral and left

Table 1 Diagnostic criteria for diastolic heart failure

Signs or symptoms of congestive heart failure
Exertional dyspnoea [eventually objective evidence by reduced peak exercise oxygen consumption (<25 ml . kg"1 . min"1)], orthopnea,

gallop sounds, lung crepitations, pulmonary oedema.

and
Normal or mildly reduced left ventricular systolic function:

LVEF§45% and LVEDIDI<3·2 cm . m"2 or LVEDVI<102 ml . m"2

and
Evidence of abnormal left ventricular relaxation, filling, diastolic distensibility and diastolic stiffness:

Slow isovolumic left ventricular relaxation:
LVdP/dtmin<1100 mmHg . s"1

and/or IVRT<30y>92 ms, IVRT30–50y>100 ms, IVRT>50y>105 ms
and/or ô>48 ms

and/or slow early left ventricular filling:
PFR<160 ml . s"1 . m"2

and/or PFR<30y<2·0 EDV . s"1, PFR30–50y<1·8 EDV . s"1, PFR>50y<1·6 EDV . s"1

and/or E/A<50y<1·0 and DT<50y>220 ms, E/A>50y<0·5 and DT>50y>280 ms
and/or S/D<50y>1·5, S/D>50y>2·5

and/or reduced left ventricular diastolic distensibility:
LVEDP>16 mmHg or mean PCW>12 mmHg

and/or PV A Flow >35 cm . s"1

and/or PV A t>MV A t+30 ms
and/or A/H>0·20

and/or increased left ventricular chamber or muscle stiffness:
b>0·27

and/or b*>16

LVEF=left ventricular ejection fraction; LVEDIDI=left ventricular end-diastolic internal dimension index; LVEDVI=left ventricular
end-diastolic volume index; LVdP/dtmin=peak negative left ventricular dP/dt; IVRT=isovolumic relaxation time indexed for age groups;
ô=time constant of LV pressure decay; PFR=peak LV filling rate indexed for age groups; EDV=end-diastolic volume; E/A=ratio of peak
early to peak atrial Doppler flow velocity indexed for age groups; S/D=ratio of pulmonary vein systolic and diastolic flow velocities
indexed for age groups; LVEDP=left ventricular end-diastolic pressure; PCW=pulmonary capillary wedge pressure; PV A
Flow=pulmonary venous atrial flow velocity; PV A t=pulmonary venous atrial flow velocity duration; MV A t=mitral atrial flow velocity
duration; A/H=ratio of atrial wave to total signal excursion on the apexcardiogram; b=constant of LV chamber stiffness; b*=constant
of muscle stiffness.

Working Group Report 991

Eur Heart J, Vol. 19, July 1998



ventricular outflow tract Doppler signals[41], mitral valve
opening on the M-mode echocardiogram and aortic
valve closure sounds on a simultaneous phonocardio-
gram[42,43]. IVRT depends on left ventricular relax-
ation kinetics and on the magnitude of left ventricular
pressure at aortic valve closure and mitral valve
opening[44]. Control values (mean&SD) are age-(y,
years) dependent: IVRT<30y=72&12 ms, IVRT30–50y=
80&12 ms, IVRT>50y=84&12 ms[45]. A prolonged
value (IVRT<30y >92 ms, IVRT30–50y >100 ms,
IVRT>50y >105 ms) provides evidence of slow isovolu-
mic relaxation, but a normal value fails to exclude it
because IVRT returns to control value when elevation
of left atrial pressure leads to earlier mitral valve
opening[46].
(3) the time constant of left ventricular pressure decay
(ô=tau): ô is the most widely used index of isovolumic
left ventricular relaxation kinetics[47]. In man, normal
values of ô, calculated with a zero asymptote pressure,
vary from 33&8 ms[40] to 36&6 ms[48] and have recently
been shown to be independent of age[49]. A significant
prolongation of ô has been reported in numerous clinical
conditions including coronary artery disease in the
absence of left ventricular dyssynchrony[40] and hyper-
tensive left ventricular hypertrophy[50]. Provided a high
quality Doppler flow velocity signal can be obtained,
calculation of ô can also be performed on the Doppler
flow velocity signal of mitral[51,52] and aortic[53] regurgi-
tation during the isovolumic relaxation period. A recent
study also proposes a non-invasive method of calculat-
ing ô using a Doppler measure of isovolumic relaxation
time and extrapolated values of left ventricular pressures
at aortic valve closure and mitral valve opening[41].

Slow early left ventricular filling
Early peak left ventricular filling rate (PFR) derived
from left ventricular contrast angiograms in control
subjects equals 300&69 ml . s"1 . m"2[54]. Left ven-
tricular filling dynamics were also analysed on radio-
nuclide left ventricular angiograms. Because of
variations in red cell tagging and in attenuation among
different patients, peak left ventricular filling rate
derived from radionuclide angiograms is usually
normalized to end-diastolic volume (EDV)[55] and
expressed as EDV . s"1 [normal values for different age
(y, years) groups indicated as subscripts to the index:
PFR<30y=3·6&0·8; PFR30–50y=3·4&0·8; PFR>50y=
3·2&0·8 EDV . s"1[56]]. Further refinement of analysis
of global left ventricular filling dynamics, such as appre-
ciation of circumferential–longitudinal shear strain and
torsional motion of the myocardium, has recently
been achieved using myocardial tagging and magnetic
resonance imaging[57–62].

Doppler echocardiographic indices of early left
ventricular filling are peak early (E wave) Doppler
flow velocity (Normal values: E<30y=0·69&0·12 m/s;
E30–50y=0·62&0·14 m/s; E>50y=0·59&0·14 m/s[45]),
E/A ratio (A=peak A wave Doppler flow velocity)
(normal values: E/A<30y=2·7&0·7; E/A30–50y=
2·0&0·6; E/A>50y=1·2&0·4[45]), deceleration time (DT)

of E velocity (normal values: DT<50y=179&20 ms;
DT>50y=210&36 ms[63]) and the ratio of pulmonary
vein systolic (S) and diastolic (D) flow velocities (S/D
ratio) (normal values: S/D<30y=1·0&0·3; S/D>50y=
1·7&0·4[64]). Slow left ventricular pressure decay, as a
result of slow myocardial relaxation or of segmental
incoordination related to coronary artery disease[36,65–67]

or conduction disturbances[68], reduces the E/A
ratio, prolongs DT and increases the S/D ratio[46,64,69]

(E/A30–50y <1·0; DT<50y >220 ms; S/D<50y >1·5). A
similar pattern has also been observed during hypo-
volaemia[70]. Elevation of left atrial pressures ‘pseudo-
normalizes’ the mitral inflow pattern and reduces the
S/D ratio. From a physical point of view, early left
ventricular filling is a function not only of the impedance
to filling exerted by the mitral valve, subvalvular appa-
ratus and left ventricular structures but also of the
atrioventricular pressure gradient[71–73]. Initial invasive
observations in patients with aortic stenosis already
demonstrated ‘pseudonormalization’ of early left
ventricular filling in the hypertrophied left ventricle
when mitral valve opening pressure was elevated. In the
presence of pseudonormalization of the mitral inflow
pattern, pulmonary venous A wave velocity remains
elevated (>35 cm . s"1), exceeding values observed in
young adults[69,74,75] and the reversed pulmonary venous
A wave outlasts the mitral A wave by 30 ms[76]. A
reduction of venous return (e.g. during Valsalva)
restores the impaired relaxation pattern of mitral inflow.
Color M-mode Doppler of intraventricular filling,
measuring flow propagation of the initial velocity[77],
filling delay of peak velocity[78] or slope of an aliased
velocity contour[79,80] also recognizes pseudonormaliz-
ation because of maintained slowing of mitral–apical
flow propagation. Pseudonormalization has also been
observed for segmental left ventricular filling abnormali-
ties: elevation of left atrial pressure reduces the extent of
wall motion abnormalities, such as prolonged inward
motion in the territory of a stenosed coronary artery or
delayed long axis shortening in restrictive left ventricular
disease[81] and after successful treatment, a fall in left
atrial pressure again unmasks these segmental left ven-
tricular filling abnormalities[82]. A severe decrease in
left ventricular compliance causes further restriction to
inflow[17], accentuates the pseudonormalization pattern
and leads to diastolic mitral regurgitation because of an
abnormal elevation of diastolic left ventricular pressure,
which exceeds left atrial pressure (E/A30–50y >3·2;
DT<50y <140 ms; S/D<50y <0·5). These alterations of left
ventricular filling dynamics progressing from normal to
slow relaxation, to pseudonormalization and to restric-
tion are paralleled by changes in left atrial function with
augmented atrial reservoir function during the slow
relaxation phase and augmented atrial conduit function
during the restrictive phase[83,84].

Based on these observations, diagnostic evidence
of slow early left ventricular filling consists of at least
one of the following criteria:
(1) PFR <160 ml . s"1 . m"2 on a contrast left
ventricular angiogram;
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(2) PFR<30y <2·0 EDV . s"1 or PFR30–50y

<1·8 EDV . s"1 or PFR>50y <1·6 EDV . s"1 on a radio-
nuclide left ventricular angiogram;
(3) E/A<50y <1·0 and DT<50y >220 ms or E/A>50y <0·5
and DT>50y >280 ms on the mitral Doppler flow
velocity signal;
(4) S/D<50y >1·5 or S/D>50y >2·5 on the pulmonary vein
Doppler flow velocity signal.

Reduced left ventricular diastolic distensibility
Left ventricular diastolic distensibility refers to the pos-
ition on a pressure–volume plot of the left ventricular
diastolic pressure–volume relation[85] and a reduction
in left ventricular diastolic distensibility refers to an
upward shift of the left ventricular pressure–volume
relation on the pressure–volume plot, irrespective of a
simultaneous change in slope. Using progressive balloon
caval occlusion, multiple end-diastolic pressure–volume
points can be obtained and a diastolic left ventricular
pressure–volume relation can be constructed, which is
composed of multiple static end-diastolic left ventricular
pressure–volume points[86–89]. This relation does not
reflect the instantaneous operating relation of the left
ventricle but offers the advantage of avoiding early
dynamic effects of left ventricular relaxation[90] and of
myocardial viscous forces[91] related to left ventricular
filling.

A reduction in left ventricular diastolic distensi-
bility provides diagnostic evidence for diastolic left
ventricular dysfunction. Left ventricular end-diastolic
distensibility is reduced when left ventricular end-
diastolic pressure (>16 mmHg)[49] or mean pulmonary
venous pressure (>12 mmHg)[15] are elevated in the
presence of a normal left ventricular end-diastolic vol-
ume index (<102 ml . m"2) or normal left ventricular
end-diastolic internal dimension index (<3·2 cm . m"2).
Similar diagnostic information on decreased left ven-
tricular end-diastolic distensibility can also be derived
from a shortened Doppler mitral A wave deceleration
time[92], from the Doppler pulmonary vein flow signal
when it reveals reverse pulmonary venous A wave flow
velocity >35 cm . s"1[69,74,75] or from the pulmonary
venous A wave duration, when it exceeds mitral A wave
duration[76,93]. Pulmonary venous A wave duration
exceeding the duration of the mitral A wave by more
than 30 ms indeed predicts a left ventricular end-
diastolic pressure >15 mmHg with a 0·85 sensitivity
and a 0·79 specificity[76]. Diagnostic evidence of
decreased left ventricular end-diastolic distensibility can
also be inferred from the apexcardiogram at rest when
the magnitude of the A wave >0·20 of the total
excursion[94–97].

Increased left ventricular chamber or myocardial muscle
stiffness
Left ventricular stiffness refers to a change in diastolic
left ventricular pressure relative to diastolic left ventricu-
lar volume (dP/dV) and equals the slope of the diastolic
pressure–volume relation. Its inverse is left ventricular
diastolic compliance (dV/dP). Because the slope of the

diastolic left ventricular pressure–volume relation varies
along the left ventricular pressure–volume curve, left
ventricular stiffness is often compared at a common level
of left ventricular filling pressures[98]. A relation was
demonstrated between Doppler mitral inflow deceler-
ation time and left ventricular chamber stiffness[99].
Mean value and upper range of the constant of chamber
stiffness (b) in control subjects are 0·21 and 0·27[100]. A b
value >0·27 therefore provides diagnostic evidence for
diastolic left ventricular dysfunction.

Muscle stiffness is the slope of the myocardial
stress–strain relation and represents the resistance to
stretch when the myocardium is subjected to stress. The
mean value of the constant of muscle stiffness (b*)
observed in a control group equals 9·9&3·3[101]. A b*
value >16 provides diagnostic evidence for diastolic left
ventricular dysfunction.

Diagnostic criteria for evidence of
abnormal left ventricular relaxation,

filling, diastolic distensibility and
diastolic stiffness in cardiac diseases

This chapter reviews the previous use of the currently
proposed indices for evidence of abnormal left ventricu-
lar relaxation, filling, diastolic distensibility and diastolic
stiffness in coronary artery disease, hypertrophic cardio-
myopathy, cardiac amyloidosis, hypertensive heart
disease, valvular heart disease, diabetes and cardiac
transplantation (Table 2).

Coronary artery disease

Evidence for abnormal left ventricular relaxation filling,
diastolic distensibility and diastolic stiffness can be
present in coronary artery disease: (1) at rest without
previous myocardial infarction; (2) at rest in the pres-
ence of previous myocardial infarction; (3) during acute
ischaemia (exercise, pacing, coronary occlusion).

Evidence for abnormal left ventricular relaxation, filling,
diastolic distensibility and diastolic stiffness at rest
without previous myocardial infarction
In patients with coronary artery disease and no detect-
able asynergy, a prolonged value of ô (53&16 ms) was
first reported by Hirota[40]. In a group of patients with
triple vessel coronary artery disease and no previous
myocardial infarction a similar value was observed
(49&5 ms)[102] but in patients with single vessel cor-
onary artery disease of the proximal left anterior
descending artery no prolongation of ô was observed
(37&10 ms)[103]. In patients with coronary artery dis-
ease, early left ventricular filling assessed by radio-
nuclide angiograms was abnormal irrespective of
impairment of systolic function or history of previous
myocardial infarction[104]. In a series of patients with
single-vessel coronary artery disease and no evidence of
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prior myocardial infarction, two thirds of patients had
decreased peak filling rate and/or prolonged time to
peak filling rate, both of which improved following
angioplasty[105]. These abnormalities could relate to sub-
clinical ischaemia, to altered myocardial mechanical
loading because of reduced early diastolic coronary
engorgement or to modified endothelial release of
mediators because of lower endothelial shear stress.

Evidence for abnormal left ventricular relaxation, filling,
diastolic distensibility and diastolic stiffness at rest in
the presence of previous myocardial infarction
In patients with coronary artery disease and previous
myocardial infarction, ô was significantly longer than in
controls (57&13 ms vs 33&8 ms)[40]. Frame-by-frame
analysis of contrast left ventricular angiograms revealed
inward regional wall motion during isovolumic relaxa-
tion in the region of the affected coronary artery[36],
which resulted in marked prolongation (200 ms) of the
isovolumic relaxation time on the M-mode echocardio-
gram[106]. Early diastolic left ventricular filling assessed
by radionuclide angiogams is abnormal in the presence
of previous myocardial infarction[104]. Peak early diasto-
lic left ventricular filling rate derived from contrast LV
angiograms is similarly reduced[107,108]. Following myo-
cardial infarction, studies analysing the mitral Doppler
inflow signal reported both a slow relaxation pattern
with E/A ¦1[109] and a short deceleration time of early
filling[110,111], probably because of variable increases in
left atrial pressure.

Evidence for abnormal left ventricular relaxation, filling,
diastolic distensibility and diastolic stiffness during acute
ischaemia
During pacing-induced ischaemia in patients with multi-
vessel coronary artery disease and no previous myo-
cardial infarction, there is further prolongation of ô
(58&7 ms[102]; 59&7 ms[112]). Exercise-induced ischae-
mia results in a significantly smaller reduction in ô than
that which occurs in patients without ischaemia[113].
Because of higher left atrial pressures, angiographic left
ventricular peak filling rates remained either unaltered
or increased during pacing or exercise-induced ischae-
mia[112,113]. Probably because of variable increases in
left atrial pressure, the Doppler mitral inflow signal
shifted to a delayed relaxation pattern with
E/A=0·68&0·15[114] or to a pseudonormalization
pattern[115,116]. During balloon coronary occlusion, ô
prolongs (60&14 ms[103]) and the Doppler mitral
inflow signal displays a slow relaxation pattern
(E/A=0·91&0·20)[117,118]. During pacing-induced is-
chaemia, left ventricular end-diastolic distensibility is
reduced[102,103,119,120] as evident from the rise in left
ventricular end-diastolic pressure from 13&4 to
24&7 mmHg at a comparable left ventricular end-
diastolic volume index (control: 83&19 ml . m"2; post-
pacing: 88&17 ml . m"2)[103]. During pacing-induced
ischaemia, a radial myocardial stiffness modulus of the
ischaemic segment is also significantly increased from
38&12 to 79&47[102]. A similar reduction in left ven-
tricular diastolic distensibility was observed during

Table 2 Evidence of abnormal left ventricular relaxation, filling, diastolic distensibility and diastolic stiffness in
cardiac diseases

LV isovolumic
relaxation LV filling LV distensibility LV muscle

stiffness

Cor art disease
No previous MI ô=49&5 ms[102]

Previous MI ô=57&13 ms[40] E/A=0·77&0·46[109]

IVRT=200 ms[106]

Pacing ischaemia ô=58&7 ms[102] E/A=0·68&0·15[114] LVEDP=24&7 mmHg b*=79&47[102]

at LVEDVI=88&17 ml . m"2[103]

Balloon cor occl ô=60&14 ms[103] E/A=0·91&0·20[118]

Hypertrophic CMP ô=63&20 ms[43] PFR=1·3 EDV . s"1[129] LVEDP=22&8 mmHg
IVRT=112&26 ms[43] at LVEDID=39·4&8·6 mm[43]

LVdP/dtmin=
998&223 mmHg . s"1[40]

Restrictive CMP LVEDP=25&6 mmHg
at normal LVEDVI[138]

Hypertensive hypertrophy ô=56&5 ms[50] LVEDP=23&6 mmHg b=0·32&0·04[175]

at LVEDVI=86&24 ml . m"2[50]

Valvular heart disease
Aortic valve disease ô=97&23 ms[161] LVEDP=23&8 mmHg b*=21&6[161]

at LVEDVI=77&29 ml . m"2[189]

Diabetes mellitus b=0·86&0·26[175]

Cardiac allograft IVRT=107&20 ms[184]

Cor art disease=coronary artery disease; MI=myocardial infarction; ô=time constant of LV pressure decay; IVRT=isovolumic
relaxation time; PFR=peak LV filling rate; E/A=ratio of peak early to peak a wave Doppler flow velocity; LVEDP=left ventricular
end-diastolic pressure; LVEDVI=left ventricular end-diastolic volume index; LVEDID=left ventricular end-diastolic internal dimension;
b*=constant of muscle stiffness; b=constant of LV chamber stiffness.
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exercise-induced ischaemia[113,121]. The changes in left
ventricular diastolic distensibility during balloon cor-
onary occlusion are controversial: some studies reported
a decrease in diastolic left ventricular distensibil-
ity[87,88,122] but other studies, which excluded the pres-
ence of coronary collaterals, observed an increase
in diastolic left ventricular distensibility[103,123,124].
Decreased diastolic left ventricular distensibility has also
been deduced from the apexcardiogram during handgrip
exercise in patients with coronary artery disease[125–127].
In 60% of patients without prior infarction and normal
ejection fraction, a doubling of the apexcardiographic A
wave/total excursion ratio was observed[128].

Hypertrophic cardiomyopathy
Indices of left ventricular relaxation have been shown to
be abnormal in patients with hypertrophic cardio-
myopathy using several techniques[129]. A prolongation
of isovolumic relaxation time has been reported by
numerous investigators[42,43,129–131] (e.g. 112&26 ms[43])
using M-mode echocardiograms and aortic valve closure
sound and a similar prolongation of ô was observed on
microtip left ventricular pressure recordings[43,132] (e.g.
63&20 ms[43]). M-mode echocardiographic and mitral
inflow Doppler examinations of hypertrophic cardiomy-
opathy patients revealed reduced posterior wall thinning
rates[133,134], prominent A waves (E/A ratio: 1·4&0·8)[45]

and prolonged deceleration times (244&55 ms)[45].
Nuclear angiograms showed asynchrony of regional
lengthening leading to impairment of global fill-
ing[129,135] (e.g. 1·3 EDV . s"1[129]). Asynchrony induced
by atrioventricular pacing caused further slowing of
isovolumic relaxation and early left ventricular fill-
ing[136]. In patients with increased chamber stiffness
superimposed on slow relaxation the nuclear peak filling
rate pseudonormalized and its value (4·9 EDV . s"1)
even exceeded the normal value (3·2 EDV . s"1[129]).
End-diastolic left ventricular distensibility is clearly
reduced in patients with hypertrophic cardiomyopathy,
as evident from elevated end-diastolic pressures
(22&8 mmHg[43]) in the presence of small end-diastolic
cavity volumes and from a high A wave/total excursion
ratio (>0·35) on the apexcardiogram[97]. Because of
prolonged left ventricular pressure decay into the filling
phase, the diastolic left ventricular pressure–volume
relation is often shifted upward and flat and the calcu-
lated constant of chamber stiffness underestimates the
real stiffness[89].

Cardiac amyloidosis
Amyloidosis is the classical example of infiltrative
restrictive cardiomyopathy. In this condition, end-
diastolic left ventricular internal dimension appears to
be normal and systolic function mildly reduced on
echocardiographic examination[137]. Left ventricular
end-diastolic distensibility is reduced as evident from
elevated left ventricular end-diastolic pressure in the
presence of normal or mildly enlarged end-diastolic
volume[137,138]. When wall thickness is moderately
increased (12–15 mm), IVRT is prolonged (87&15 ms),

the Doppler inflow signal reveals a slow relaxation
pattern with E/A=1·2&0·6 and DT=181&43 ms and
the pulmonary vein signal shows in some patients an
increased S wave, decreased D wave and reverse atrial
flow velocity greater than normal (21 cm . s"1)[139]. For
further increases in wall thickness, pseudonormalization
of the Doppler inflow signals occur and prognosis
becomes worse for patients with DT<150 ms[140,141].

Hypertensive heart disease — role of neurohormones and
extracellular matrix
A prolongation of IVRT[142–144] and of ô[50,145] (e.g.
ô=56&6 ms[50]) has been observed in hypertensive left
ventricular hypertrophy, especially in more severe left
ventricular hypertrophy. This prolongation reacts
favourably to an acute intracoronary administration of
angiotensin converting enzyme inhibitors[50] and this
reaction supports a determinant role of the cardiac
renin–angiotensin system in diastolic left ventricular
dysfunction of hypertensive left ventricular hypertro-
phy[146]. Acute effects on diastolic left ventricular func-
tion have also been reported for other neurohormones
such as brain natriuretic peptide[147] and C-type natriu-
retic peptide[148]. Neurohormones affect diastolic left
ventricular function not only acutely but also chroni-
cally through altered composition of the left ventricular
wall (i.e. increased interstitial fibrosis or fibrous con-
tent)[149] and through altered activity of myofibro-
blasts[150]. Indices of slow left ventricular relaxation
return towards normal values following antihypertensive
therapy induced regression of left ventricular hypertro-
phy[151]. Early left ventricular filling is impaired, as
evident from reduced left ventricular peak filling rate on
radionuclide angiograms[152,153], depressed E/A ratio
and blunted E waves on the mitral Doppler inflow
signal[154–157]. This impairment of left ventricular filling
is related to left ventricular mass index and leads to
inadequate augmentation of left ventricular end-
diastolic volume during exercise to maintain systolic
function[158]. Finally, left ventricular diastolic distensi-
bility[50] and compliance are reduced in hypertensive left
ventricular hypertrophy[145].

Valvular heart disease
Structural intramyocardial abnormalities and impair-
ment of myocardial relaxation represent a major cause
of diastolic heart failure in patients with valvular heart
disease[1]. The enhanced susceptibility of hypertrophied
myocardium to ischaemia[159] and the frequent elevation
of right atrial pressure with concomitant engorgement of
the coronary veins[160] further contribute to the reduc-
tion of left ventricular diastolic distensibility in valvular
heart disease. In aortic valve disease, 50% of patients
with aortic stenosis and 90% of patients with aortic
regurgitation have signs of diastolic left ventricular
dysfunction in the presence of normal systolic func-
tion[161] as evident from a prolongation of ô (97&23 ms)
and an increase of the myocardial stiffness modulus (b*)
(b*=21&6). This increase in the myocardial stiff-
ness modulus progresses (b*=30&7) in the early
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post-operative period because of slower regression of
fibrosis than of muscular hypertrophy. In aortic stenosis,
diastolic left ventricular dysfunction is dependent
on both gender and age, being more common in
male patients (b*=31&14)[162] and in the elderly
(b*=36&12)[163] and improves following intracoronary
infusion of an angiotensin converting enzyme inhibi-
tor[164], possibly through increased myocardial action of
bradykinin and nitric oxide[165]. In patients with isolated
aortic stenosis, Doppler left ventricular filling indices are
not different from age-matched normal subjects[166].

Diabetes mellitus
The incidence of heart failure is increased in diabetes
mellitus[167] and especially following myocardial infarc-
tion, diastolic heart failure seems to be a major con-
tributing factor[168]. Possible mechanisms for diastolic
heart failure include excessive myocardial fibrosis[169],
interstitial accumulation of glycoproteins[170], slow
sarcoplasmic calcium reuptake[171] or altered release
from a dysfunctional coronary endothelium of me-
diators such as nitric oxide and endothelin, which exert
paracrine myocardial effects on diastolic proper-
ties[172,173]. To investigate whether diabetes mellitus
results in primary myocardial abnormalities unrelated to
ischaemic heart disease, hypertension or obesity, several
studies investigated left ventricular function in early
insulin dependent diabetes with normal coronary angio-
grams. Invasive studies revealed a large increase in left
ventricular chamber stiffness[174,175] especially in the
obese (diabetic lean: b=0·86&0·26; diabetic obese:
b=1·44&0·26[175,176]) which was related to plasma
glucose and not to plasma insulin or left ventricular
mass, and which exceeded the increase in chamber
stiffness observed in the same study in hypertensives
(hypertensives lean: b=0·32&0·04; hypertensive obese:
b=0·39&0·06). Non-invasive studies further confirmed
a decrease in diastolic left ventricular distensibility in
children with type 1 diabetes, as evident from smaller
end-diastolic cavity dimensions[177] and an increased A
wave on the mitral inflow signal, especially during a cold
pressor test[178]. Following administration of nitroglyc-
erin, adults with uncomplicated type 1 diabetes showed
a reduced E/A ratio and prolonged deceleration time
on the Doppler mitral inflow signal consistent with
unmasking of a slow left ventricular relaxation pattern
through left ventricular preload reduction[179].

Cardiac allograft
Diastolic heart failure contributes to the reduced exer-
cise tolerance of allograft recipients[180]. Allograft recipi-
ents show evidence of slow isovolumic relaxation
(ô=43&6 ms)[48] and an increased diastolic left ventricu-
lar chamber stiffness modulus[181] because of a steeper
than normal diastolic left ventricular pressure–volume
relation, which was variably attributed to donor–
recipient heart size mismatch[182], ischaemic injury at the
time of graft retrieval, repetitive episodes of rejection, or
cardiac hypertrophy because of cyclosporine-induced
arterial hypertension. During episodes of rejection,

restrictive physiology of the allograft becomes more
prominent[183] with abbreviation of isovolumic relaxa-
tion time from 107&20 ms to 65&19 ms[184]. Even at
the time of routine annual cardiac follow-up[185], some
patients (&15%) show signs of persistent restrictive
physiology with a sharp early diastolic dip on the left
ventricular pressure recording, a shorter isovolumic
relaxation time (65&16 ms) and a shorter deceleration
time of mitral and tricuspid inflow. These patients
were characterized by a significantly higher rejection
incidence.

Conclusion

The present study proposes guidelines for the diagnosis
of diastolic heart failure using well defined cut-off values
of indices of left ventricular function obtainable during
cardiac catheterization or during non-invasive cardiac
imaging and summarizes existing evidence for abnormal
left ventricular relaxation, filling, diastolic distensibility
and diastolic stiffness in different cardiac diseases fre-
quently characterized by diastolic heart failure. A cor-
rect diagnosis of diastolic heart failure has become
relevant to daily practice because diastolic heart failure
features a more benign prognosis and requires specific
forms of treatment, some of which are currently under
investigation in large randomized clinical trials.

Application of uniform and standardized guide-
lines for the diagnosis of diastolic heart failure is a
prerequisite for establishing a database on patients with
diastolic heart failure. Such a database could provide a
more precise insight into the incidence of diastolic heart
failure in different patient populations and help to
oversee the health care management problem imposed
by diastolic heart failure. In the currently proposed
guidelines, diagnostic evidence for diastolic heart failure
is obtainable using several techniques and indices. The
application of several techniques and the determination
of several indices in the same patient population with
diastolic heart failure will allow for future assessment of
the independent predictive value of each technique and
each index for the diagnosis of diastolic heart failure.
The currently proposed guidelines for the diagnosis of
diastolic heart failure will therefore require continuous
updating as new insights into the predictive value of
techniques and indices emerge.

Appendix 1

Indices of left ventricular relaxation, filling,
diastolic distensibility and diastolic stiffness:

methodological aspects

Peak negative left ventricular dP/dt (LV dP/dtmin): a valid
measurement of this index requires a high fidelity tip
micromanometer left ventricular pressure signal and
adequate signal processing (high-cut filter >100 Hz).

996 Diastole Study Group

Eur Heart J, Vol. 19, July 1998



Time constant of left ventricular pressure decay (ô=tau):
ô is derived from a high fidelity tip micromanometer left
ventricular pressure recording using the following
formula:

Pt=P0e"t/ô+P£

where Pt equals left ventricular pressure at time t, P0

equals pressure at dP/dtmin and P£ the asymptote press-
ure or final pressure to which pressure would decay in
the absence of filling. Curve fits to the digitized (5 ms
interval) pressure data points have used monoexponen-
tial[47], two sequential monoexponentials[186], polyno-
mial[43] or logistic[187] models. Other investigators
derived ô from a linear curve fit to a dP/dt vs P plot[188].
A monoexponential fit yields a satisfactory correlation
coefficient (r>0·99) except in an occasional patient with
hypertrophic cardiomyopathy[188,189], aortic regurgi-
tation[190] or acute myocardial ischaemia[103]. In these
patients, a non-exponential decay of isovolumic left
ventricular relaxation pressure can easily be appreciated
from the convex downward morphology of the dP/dt
signal during isovolumic relaxation[188,189]. The curve fit
is applied to the isovolumic left ventricular pressure data
points. It starts from left ventricular pressure at peak
dP/dtmin, which coincides with aortic valve closure, and
ends at a left ventricular pressure corresponding to
mitral valve opening (usually set equal to the following
left ventricular end-diastolic pressure +5 mmHg).
Because of a slight deviation of left ventricular pressure
decay from an exponential decline, a higher starting
point or a higher end point will erroneously prolong
ô[191]. Under conditions of drastically different left ven-
tricular loads, this can easily be corrected for by calcu-
lation of all time constants with an equal starting point
(=the lowest pressure at which left ventricular dP/dtmin

occurred) and equal end point (=the highest mitral valve
opening pressure)[189]. P£ (=asymptote pressure) is the
final pressure to which left ventricular pressure would
decay in the absence of filling. It has experimentally been
determined in the non-filling dog heart using a metal
occluder and amounted to "7 mmHg[192]. In another
non-filling dog heart preparation with preserved mitral
apparatus[193] and in patients with mitral stenosis[194]

during occlusion of the mitral valve with the self-
positioning Inoue balloon at the time of percutaneous
balloon mitral valvuloplasty, these sub-atmospheric
pressures were not observed and P£ equalled
+2 mmHg. In both experimental[192] and clinical[194]

non-filling beats, it has been demonstrated that the value
of P£ derived from a curve fit procedure had no relation
to the directly measured value of P£. The use of a
zero asymptote (P£=0) therefore seems adequate as
evidence of abnormal left ventricular relaxation in an
individual patient. The use of a variable asymptote is
recommended for a more refined analysis such as evalu-
ation of effects of treatment on isovolumic relaxation
kinetics.
Peak early left ventricular filling rate (PFR): Estimates
of peak early left ventricular filling rate have been

obtained from frame-by-frame analysis of left ventricu-
lar contrast angiograms measuring instantaneous
filling volumes (V) at 20 ms intervals (filming rate 50
frames . s"1) and calculating instantaneous filling
rate (FR) as FR=V(t+0·02)-V(t-0·02)/0·04, where
t=time[195].
Increased left ventricular chamber or myocardial muscle
stiffness: Determination of left ventricular chamber stiff-
ness requires an exponential curve fit to the diastolic left
ventricular pressure (P)-volume (V) relation constructed
from a frame-by-frame analysis (every 20 ms) of a left
ventricular angiogram and a simultaneously recorded
high-fidelity tip micromanometer left ventricular pres-
sure recording. Although the mathematical validity of
such an exponential curve fit has been challenged[196],
this is usually achieved through logarithmic transform-
ation of the exponential diastolic left ventricular
pressure–volume relation into a linear equation[197–199],

ln(P-c)=lna+bV

where b=constant of chamber stiffness and a,c=
intercept and asymptote of the relation.

Muscle stiffness is the slope of the myocardial
stress–strain relation. Calculation of stress requires a
geometric model of the left ventricle and calculation of
strain an assumption of the unstressed left ventricular
volume, which cannot be measured in vivo and is
therefore usually replaced by left ventricular dimension
at a wall stress of lg . cm"2. Determination of muscle
stiffness requires a mathematical curve fit to the diastolic
left ventricular wall stress (S)–strain (E) relation, which
can be transformed into a linear equation[197–199]

ln(S-c*)=lna*+b*E

where b*=constant of muscle stiffness and
a*,c*=intercept and asymptote of the relation.

Appendix 2

Participants of the European Study Group
on Diastolic Heart Failure, Working Group
on Myocardial Function, European Society

of Cardiology

Walter J. Paulus, MD, PhD (Chairman); Cardiovascular
Center, Aalst, Belgium; Dirk L. Brutsaert, MD, PhD;
Thierry C. Gillebert, MD, PhD; Frank E. Rademakers,
MD, PhD; Stanislas U. Sys, PhD, MD; University of
Antwerp, Antwerp, Belgium; Adelino F. Leite-Moreira,
MD; University of Porto, Portugal; O. M. Hess, MD,
Zhihua Jiang, PhD; Philipp Kaufmann, MD; Lazar
Mandinov, MD; Christian Matter, MD; University
Hospital Inselspital, Bern, Switzerland; Paolo Marino,
MD; University of Verona, Verona, Italy; Derek G.
Gibson, MD; Michael Y. Henein, MD, PhD; Royal
Brompton Hospital, London, U.K.; Jan Manolas, MD;
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University of Athens, Athens, Greece; Otto A. Smiseth,
MD; Marie Stugaard, MD; Rikshospitalet, Oslo,
Norway; Liv K. Hatle, MD; University of Lindkjoping,
Lindkjoping, Sweden; Paolo Spirito, MD, Ospedale San
Andrea, La Spezia, Italy; Sandro Betocchi, MD; Bruno
Villari, MD, PhD; Universita di Napoli, Naples, Italy;
Ole Goetzsche, MD; Aarhus Amtssygehus, Aarhus,
Denmark; Ajay M. Shah, MD, MRCP; University of
Wales College of Medicine, Cardiff, U.K.
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