NOACs in VTE drug selection according to patient's risk profile and duration of therapy

João Morais

Head of Cardiology Division and Research Centre

Leiria Hospital Centre

Portugal

João Morais

On the last year JM received honoraria for consultant activities and invited speaker for pharmaceutical and device's companies

Astra Zeneca Bayer Healthcare BMS / Pfizer Boehringher Ingelheim Boston Scientific Daiichi Sankyo Merck Sharp and Dhome

Goals of VTE treatment

Minimize Bleeding Risk

CTEPH = chronic thromboembolic pulmonary hypertension

New concepts in anticoagulation therapy

• Heparin plus VKA

New therapy

Single drug approachHigher initial dose

www.escardio.org

Individualized therapy

Based on the clinical setting

Based on patient's characteristics

Based on the individual prognosis

www.escardio.org

Inferior vena cava (IVC)

Common illac vein Internal illac vein External illac vein

Common femoral vein

Deep femoral vein

Femoral vein (formerly: Superficial femoral veir

Popliteal vein Gastrocnemius vein Anterior tibial vein Soleus vein Peroneal vein Posterior tibial vein

Proximal DVT

Popliteal Femoral Deep femoral Common femoral Iliac

Distal DVT

Gastrocnemius Tibial (ant/post) Soleus Peroneal

Superficial vein

Great saphenous

Inferior vena cava (IVC)

Common illac vein Internal illac vein External illac vein

Common femoral vein

Deep femoral vein

Femoral vein (formerly: Superficial femoral veir

Popliteal vein Gastrocnemius vein Anterior tibial vein Soleus vein Peroneal vein Posterior tibial vein

Proximal DVT

Early treatment Anticoagulants Agressive Parenteral R_x

Distal DVT

Gastrocnemius Tibial (ant/post) Soleus Peroneal

Superficial vein

Great saphenous

Inferior vena cava (IVC)

Common illac vein Internal illac vein External illac vein

Common femoral vein

Deep femoral vein

Femoral vein (formerly: Superficial femoral veir

Popliteal vein Gastrocnemius vein Anterior tibial vein Soleus vein Peroneal vein Posterior tibial vein

Proximal DVT

Early treatment Anticoagulants Agressive Parenteral R_x

Distal DVT Conservative treatment Delayed oral R_x

Superficial vein

Great saphenous

Inferior vena cava (IVC)

Common illac vein Internal illac vein External illac vein

Common femoral vein

Deep femoral vein

Femoral vein (formerly: Superficial femoral veir

Popliteal vein Gastrocnemius vein Anterior tibial vein Soleus vein Peroneal vein Posterior tibial vein

Proximal DVT

Early treatment Anticoagulants Agressive Parenteral R_x

Distal DVT Conservative treatment Delayed oral R_x

Superficial vein

Prophylatic treatment

Chest 2012;141:e419S-e494S

EUROPEAN SOCIETY OF CARDIOLOGY® **Clinical trigger**

Unprovoked

DVT or PE in patients with realishing occurring major clinite ment of solutions for the solution of the soluti

www.escardio.org

Bleeding risk assessment

Risk factors
$Age > 65 y^{17-25}$
Age $> 75 \text{ y}^{17-21,23,25-34}$
Previous bleeding ^{18,24,25,30,33-36}
Cancer ^{20,24,30,37}
Metastatic cancer ^{36,38,}
Renal failure ^{18,24,25,28,30,33}
Liver failure ^{19,21,27,28}
Thrombocytopenia ^{27,36}
Previous stroke ^{18,25,27,39}
Diabetes ^{18,19,28,32,34}
Anemia ^{18,21,27,30,34}
Antiplatelet therapy ^{19,27,28,34,40}
Poor anticoagulant control ^{22,28,35}
Comorbidity and reduced functional capacity ^{24,28,36}
Recent surgery ^{21,41,b}
Frequent falls ²⁷
Alcohol abuse ^{24,25,27,34}

Low risk 0 risk factors

Moderate risk 1 risk factor

High risk ≥ 2 risk factors

Bleeding risk assessment

Anticoagulation	0 - 3 months
-----------------	--------------

	E	stimated Absolute Risk of Major Bleedin	ng, %
Categorization of Risk of Bleeding ^e	Low Risk ^d (0 Risk Factors)	Moderate Risk ^d (1 Risk Factor)	High Risk¹ (≥2 Risk Factors
Anticoagulation 0-3 mo ^e			
Baseline risk (%)	0.6	1.2	4.8
Increased risk (%)	1.0	2.0	8.0
Total risk (%)	1.6^{e}	3.2	12.8^{f}
Anticoagulation aft	er 3 months		
Baseline risk (%/y)	0.3^{h}	0.6	≥2.5
Increased risk (%/y)	0.5	1.0	≥ 4.0
Total risk (%/y)	0.8^{i}	1.6^{i}	≥ 6.5

Targets for anticoagulants

Adapted from Weitz JI, et al.^[1]

Current and evolving anticoagulant regimen

Treatment of acute DVT/PE: NOACs non-inferior to warfarin for prevention of recurrent DVT/PE in Phase III trials

Direct comparisons cannot be made as no head-to-head data are available

*Pooled data from RE-COVER™ and RE-COVER™ II; [†]Pooled analysis; [‡]On treatment

1. Schulman S et al. Circulation 2014;129:764–72; **2.** Prins MH et al. Thromb J 2013;11:21; **3.** Agnelli G et al. N Engl J Med 2013;369:799–808; **4.** The Hokusai-VTE Investigators. N Engl J Med 2013;369:1406–15

Treatment of acute DVT/PE: NOACs associated with less major bleeding than warfarin in Phase III trials^{*}

Direct comparisons cannot be made as no head-to-head data are available

*Statistically significant reductions for dabigatran, rivaroxaban, and apixaban vs warfarin, numerical reduction for edoxaban vs warfarin; [†]Pooled data from RE-COVER[™] and RE-COVER[™] II; oral drug treatment period only; [‡]Pooled analysis; [§]On treatment

1. Schulman S et al. Circulation 2014;129:764–72; **2.** Prins MH et al. Thromb J 2013;11:21; **3.** Agnelli G et al. N Engl J Med 2013;369:799–808; **4.** The Hokusai-VTE Investigators. N Engl J Med 2013;369:1406–15

NOACs and DVT

REVIEW

Efficacy and Safety of the New Oral Anticoagulants Dabigatran, Rivaroxaban, Apixaban, and Edoxaban in the Treatment and Secondary Prevention of Venous Thromboembolism: A Systematic Review and Meta-analysis of Phase III Trials

S.K. Kakkos^{*}, G.I. Kirkilesis, I.A. Tsolakis

Department of Vascular Surgery, University Hospital of Patras, Patras, Greece

European Journal of Vascular and Endovascular Surgery (2014), http://dx.doi.org/10.1016/j.ejvs.2014.05.001

Major bleeding

а		NOA	s	VKAs		Risk Ratio			Risk Ratio		
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed,	, 95% CI	
	RE-COVER	20	1274	24	1265	10.3%	0.83 [0.46, 1.49]	2009		-	
	EINSTEIN-DVT	14	1718	20	1711	8.6%	0.70 [0.35, 1.38]	2010		-	
	EINSTEIN-PE	26	2412	52	2405	22.4%	0.50 [0.31, 0.80]	2012			
	AMPLIFY	15	2676	49	2689	21.0%	0.31 [0.17, 0.55]	2013			
	Hokusai-VTE	56	4118	66	4122	28.3%	0.85 [0.60, 1.21]	2013			
	RE-COVER II	15	1280	22	1288	9.4%	0.69 [0.36, 1.32]	2014		1	
	Total (95% CI)		13478		13480	100.0%	0.63 [0.51, 0.77]		•]
	Total events	146		233							
	Heterogeneity: Chi² = 10.65, df = 5 (P = 0.06); l² = 53%									10	
	Test for overall effect: Z = 4.46 (P < 0.00001)								Favors NOAs F	avors VKAs	10

Net clinical benefit

	NOA	s	VKA	s		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI Year	M-H, Fixed, 95% Cl
RE-COVER	50	1274	51	1265	9.6%	0.97 [0.66, 1.43] 2009	
EINSTEIN-DVT	51	1731	73	1718	13.7%	0.69 [0.49, 0.99] 2010	
EINSTEIN-PE	83	2419	96	2413	18.0%	0.86 [0.65, 1.15] 2012	
AMPLIFY	74	2676	120	2689	22.4%	0.62 [0.47, 0.82] 2013	_
Hokusai-VTE	120	4118	144	4122	27.0%	0.83 [0.66, 1.06] 2013	
RE-COVER II	45	1279	50	1289	9.3%	0.91 [0.61, 1.35] 2014	
Total (95% CI)		13497		13496	100.0%	0.79 [0.70, 0.90]	◆]
Total events	423		534				
Heterogeneity: Chi ² =	5.49, df = 5	5 (P = 0	.36); 2 = 9	9%			
Test for overall effect:	Z = 3.65 (F	P = 0.00	03)				Favors NOAs Favors VKAs

www.escardio.org

European Journal of Vascular and Endovascular Surgery (2014), http://dx.doi.org/10.1016/j.ejvs.2014.05.001

What long-term data exist for NOACs compared with warfarin in secondary prevention of VTE?

RE-COVER™ II Dabigatran 150 mg BID vs warfarin ^{1,2}					Initial parentera	al therapy		
PRETREATMENT 3–12 months*	RE-MEDY ™* Dabigatran 150	RE-MEDY™ * Dabigatran 150 mg BID vs warfarin ³						
PRETREATMENT 6–18 months*		RE-SONATE™ Dabigatran 150 m	g BID vs placebo ³					
AMPLIFY Apixaban vs warfarin ⁴	AMPLIFY-EXT Apixaban vs p l	acebo⁵						
EINSTEIN DVT/PE Rivaroxaban vs Vk	(A ^{6,7}	EINSTEIN-EXT Rivaroxaban vs	placebo ⁶					
HOKUSAI-VTE Edoxaban vs war	farin ⁸							
Time (months)	6 1	2 1	8	24	30	48		

*Original protocol, 3–6 months pretreatment, 18 months on study drug; amendment allowed 3–12 months pretreatment, then up to 36 months on study drug

- 1. Schulman S et al. N Engl J Med 2009;361:2342–52; 2. Schulman S et al. Circulation 2014;129:764–72;
- 3. Schulman S et al. N Engl J Med 2013;368:709–18; 4. Agnelli G et al. N Engl J Med 2013;369:799–808;
- 5. Agnelli G et al. N Engl J Med 2013;368:699–708; 6. The EINSTEIN Investigators. N Engl J Med 2010;363:2499–510;
- 7. The EINSTEIN-PE Investigators. N Engl J Med 2012;366:1287–97;
- 8. The Hokusai-VTE Investigators. N Engl J Med 2014;369:1406–15

Risk of recurrent VTE or VTE-related death: NOACs vs placebo

Study	% Pa	atients	HR	P-value	
	NOAC	Placebo	(95% CI)		
RE-SONATE ^{™1*}	0.4	5.6	0.08 (0.02–0.25)	<0.001	
EINSTEIN-EXT ²	1.3	7.1	0.18 (0.09–0.39)	<0.001	
AMPLIFY-EXT ^{3†}					
2.5 mg BID	1.7	8.8	0.19 (0.11–0.33)	<0.001	
5 mg BID	1.7	8.8	0.20 (0.11–0.34)	<0.001	

Direct comparisons cannot be made as no head-to-head data are available

*Unexplained death also included in primary efficacy outcome; [†]All-cause death also included in primary efficacy outcome **1.** Schulman S et al. N Engl J Med 2013;368:709–18; **2.** The EINSTEIN Investigators. N Engl J Med 2010;363:2499–510; **3.** Agnelli G et al. N Engl J Med 2013;368:699–708

REMEDY: efficacy and safety of long-term treatment

Outcome	Dabigatran (N = 1430) no. of pa	Warfarin (N =1426) Itients <mark>(</mark> %)	HR (95% CI)	P Value
Primary endpoint of recurrent or fatal VTE	26 (1.8)	18 (1.3)	1.44 (0.78-2.64)	.01*
Secondary endpoints				
Symptomatic DVT	17 (1.2)	13 (0.9)	1.32 (0.64-2.71)	.46
Symptomatic nonfatal PE	10 (0.7)	5 (0.4)	2.04 (0.70-5.98)	.19
Major bleeding event	13 (0.9)	25 (1.8)	0.52 (0.27-1.02)	.06
Major or clinically relevant bleeding event	80 (5.6)	145 (10.2)	0.54 (0.41-0.71)	<.001

*The P value for the primary outcome is for noninferiority

Schulman S, et al. N Engl J Med. 2013;368:709-718.

VTE trials: proportions of patients with PE

Study	Study Drug/Control, %
Rivaroxaban	
• EINSTEIN-PE	100/100
Dabigatran	
• RE-COVER	21.2/21.4
• RE-MEDY	22.7/23.5
• RE-SONATE	26.9/26.9
Apixaban	
AMPLIFY	25.2/25.2
 AMPLIFY-Extension 	35.2/33.5
Edoxaban	
Hokusai-VTE	40/40

EINSTEIN Investigators. *N Engl J Med* 2012;366:1287-1297^[11]; Schulman S, et al. *N Engl J Med* 2009;361:2342-2352^[6]; Schulman S, et al. *N Engl J Med* 2013;368:709-718^[7]; Agnelli G, et al. *N Engl J Med* 2013;369:799-808^[8]; Agnelli G, et al. *N Engl J Med* 2013;368:699-708^[9]; Hokusai-VTE Investigators. *N Engl J Med*. 2013;369:1406-1415.^[10]

Extensive pulmonary embolism	EINSTEIN-PE 24.7% rivarox group
> 25% of entire pulmonary vasculature	23.9% control group
	AMPLIFY 38.4 % apixa group
	36.0% control group

VTE extension studies

a. Agnelli G, et al. *N Engl J Med*. 2013;368:699-708^[4]; b. EINSTEIN Investigators. *N Engl J Med*. 2010;363:2499-2510.^[9]

Paucity of clinical trial data

- (< 10% of the populations in RCTs)
- **No comparison with LMWH**
- Patients were not representative of cancer patients
- **Drug interaction may be clinically relevant**
- Liver and renal dysfunction are common in cancer patients

NOACs in cancer patients

SELECT-D Study Design

Young A, et al. J Clin Oncol. 2014;32. Abstract TPS9661.^[20]

NOACs in fragile patients

EINSTEIN pooled analysis

- Elderly (>75 years)
- Body weight < 50 kg
- Renal failure (CrCl < 50 mL/min)
- n = 790

Outcome	Rivaroxaban, %	Enoxaparin/ VKA, %	HR (95% CI)	<i>P</i> Value
Recurrence of thromboembolism	2.7	3.8	0.68 (0.39 - 1.18)	-
Overall	2.1	2.3	0.89 (0.66 - 1.19)	< .0001
Major bleeding	1.3	4.5	0.27 (0.13 - 0.54)	-
Overall	1.0	1.7	0.54 (0.37 - 0.79)	.002

Büller HR, et al. 54th Annual ASH Annual Meeting and Exposition; 2012.^[6]

- The paradigm of DVT treatment is rapidly changing. The evidence for NOACs is strong enough to spread the use of these drugs instead of VKAs
- A single drug approach is very attractive and very useful for an outpatient management of patients with DVT
- More data is needed in patients with massive pulmonary embolism (after lytics ?)
- Extended treatment is the rule for unprovoked DVT/PE but no firm recommendations about when to stop

NOACs in VTE drug selection according to patient's risk profile and duration of therapy

João Morais

Head of Cardiology Division and Research Centre Leiria Hospital Centre

Portugal

