Understanding thrombosis in venous thromboembolism

João Morais

Head of Cardiology Division and Research Centre Leiria Hospital Centre Portugal

Disclosures

João Morais

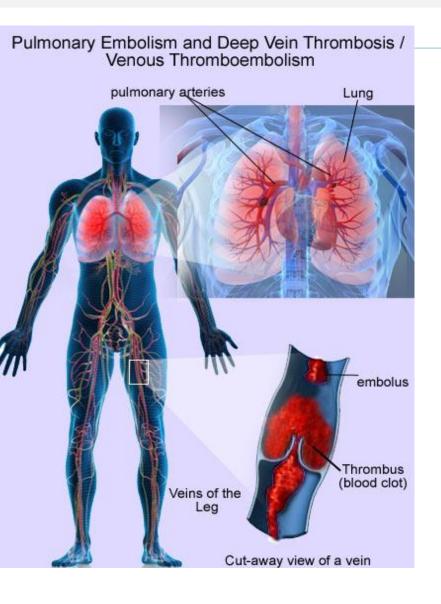
On the last year JM received honoraria for consultant activities and invited speaker for pharmaceutical and device's companies

Astra Zeneca

Bayer Healthcare

BMS / Pfizer

Boehringher Ingelheim


Boston Scientific

Daiichi Sankyo

Merck Sharp and Dhome

Background

Venous thrombosis

Yearly incidence 1/1000 person-years

1/3 of DVT complicate with a clot in the lungs

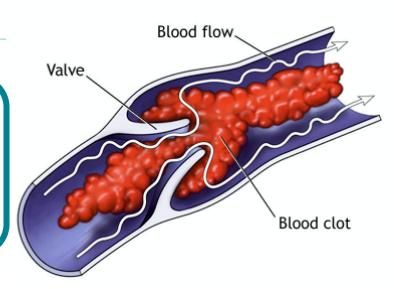
Recurrence at 5 years - 28%

Case-fatality rate (recurrence) 3% - 6%



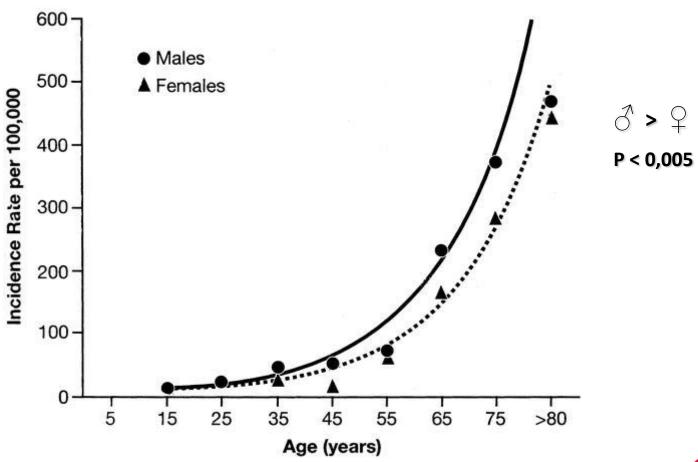
Habson PO et al. Arch Intern Med 2000;160:769 Carrier M et al. Ann Intern Med 2010;152:578

DVT by the numbers


96% arise in the lower extremities4% arise in the upper extremities.

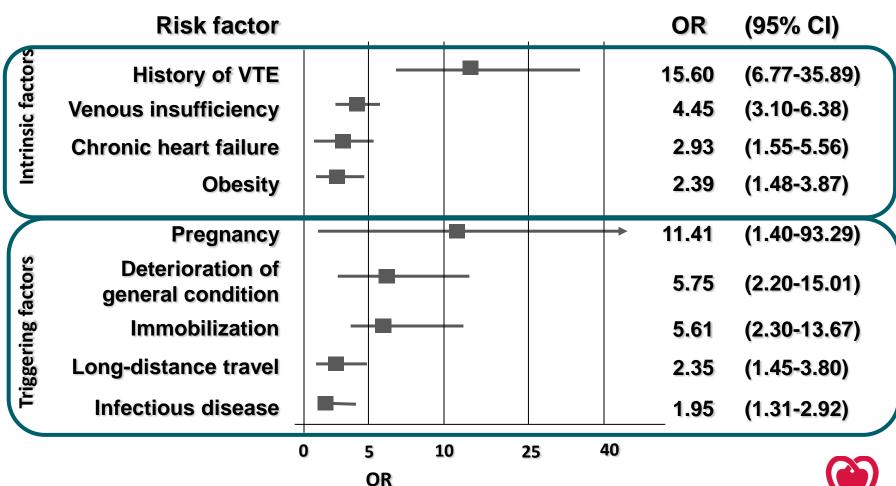
Chest 2008 Jan;133(1):143-8

Almost all lower-extremity DVTs arise from the calf veins and extend proximally.


Arch Intern Med 1993;153(24):2777-80

Epidemiology

Incidence of DVT by age



USA data (Worcester Massachusets) 380.000 inhabitants

Risk factors

medical outpatients presenting with DVT

Recurrence after withdrawal of AC

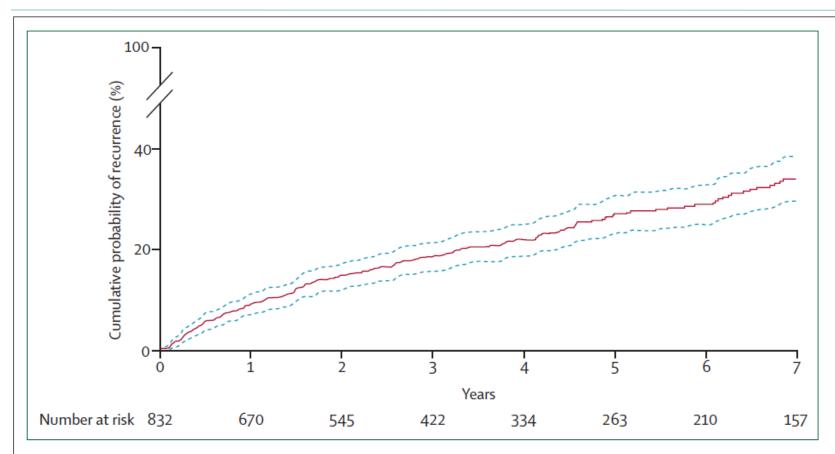
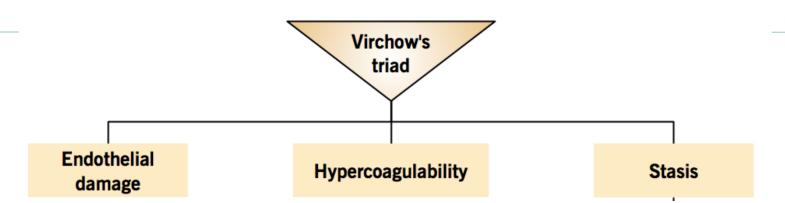
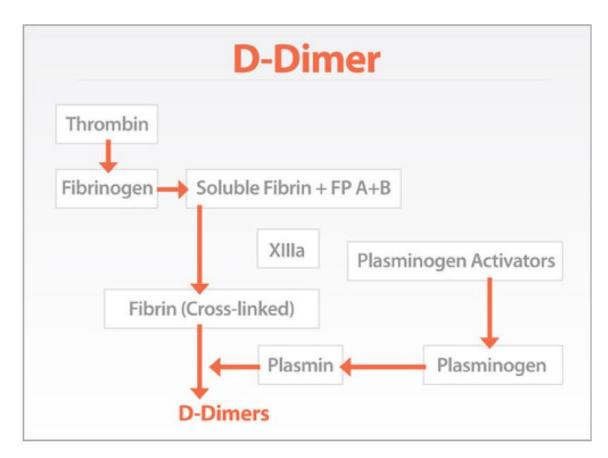



Figure 1: Kaplan-Meier estimates of cumulative rate of recurrence in 832 patients with a first unprovoked venous thrombosis after withdrawal of anticoagulant treatment Dotted lines show 95% CIs.

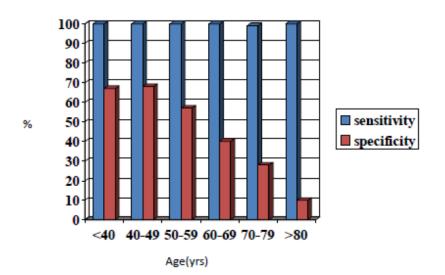
Pathophysiology


Arterial versus venous thrombosis

	Arterial thrombosis	Venous thrombosis (VTE)
Mechanism	Typically from rupture of atherosclerotic plaques.	Typically from a combination of factors from Virchow's triad.
Location	Left heart chambers, arteries	Venous sinusoids of muscles and valves in veins
Diseases	Acute coronary syndrome Ischemic stroke Limb claudication/ischemia	Deep venous thrombosis Pulmonary embolism
Composition	Mainly platelets	Mainly fibrin
Treatment	Mainly antiplatelet agents (ASA, clopidogrel)	Mainly anticoagulants (heparins, warfarin)
		,

Thromb Haemost 2011 Apr;105(4):586-96.

Diagnosis (indirect thrombus evidence)


@Fibrin D-dimer is a degradation product of cross-linked fibrin, and its concentration increases in patients with VTE.

D-dimer is highly sensitive (more than 95%) in excluding DVT, usually below a threshold of 500 μg/L

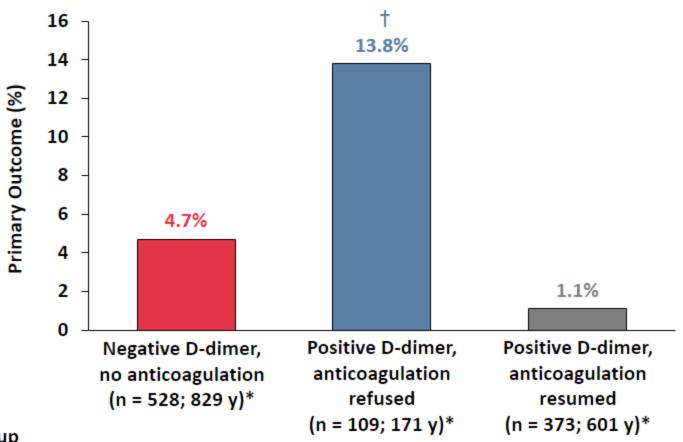
Age-adjusted D-dimers levels

Effects of age on D-dimer performance

age	Cut-off
≤ 50 yrs	500 μg/L
> 50 yrs	Age x 10 μg/L

ESC guidelines 2014

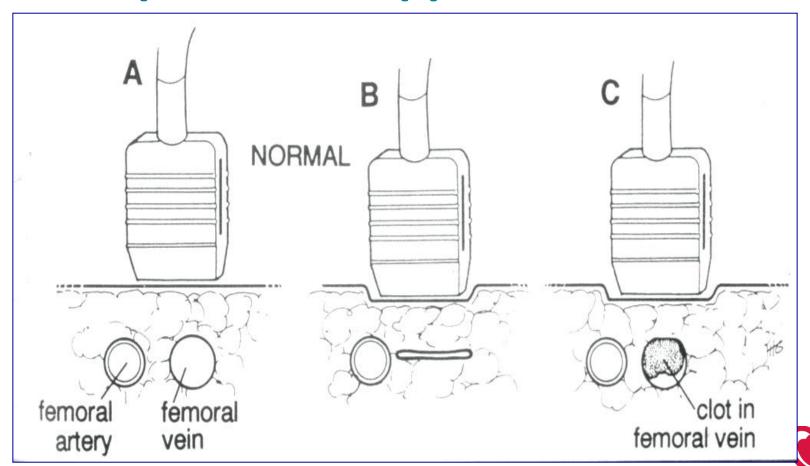
Righini et al, Presse Med. 2001


D-Dimer Assay	Low/Intermediate or Unlikely		3-mo Thromboembolism Risk		D-Dimer ≥500 µg/L and	3-mo Thromboembolism Risk	
	Clinical Probability, D	D-Dimer <500 µg/L	No. of Events/ Total Patients	% (95% CI)	<age-adjusted Cutoff</age-adjusted 	No. of Events/ Total Patients	% (95% CI)
VIDAS D-Dimer Exclusion	1345	423	0/417	0.0 (0.0-0.9)	130	0/127	0.0 (0.0-2.9)
Innovance D-Dimer	838	202	1/202	0.5 (0.1-2.8)	103	1/103	1.0 (0.2-5.3)
STA-Llatest D-Dimer	389	132	0/132	0.0 (0.0-2.8)	49	0/47	0.0 (0.0-7.6)
D-Dimer HS 500	185	32	0/31	0.0 (0.0-11.0)	23	0/23	0.0 (0.0-14.3
Second-generation Tina-quant	128	26	0/26	0.0 (0.0-12.9)	32	0/31	0.0 (0.0-11.0
Cobas h 232	13	2	0/2	0.0 (0.0-65.8)	0		
Total	2898	817	1/8	0 0.1 (0.0-0.7)	337	1/331	0.3 (0.1-1.7)

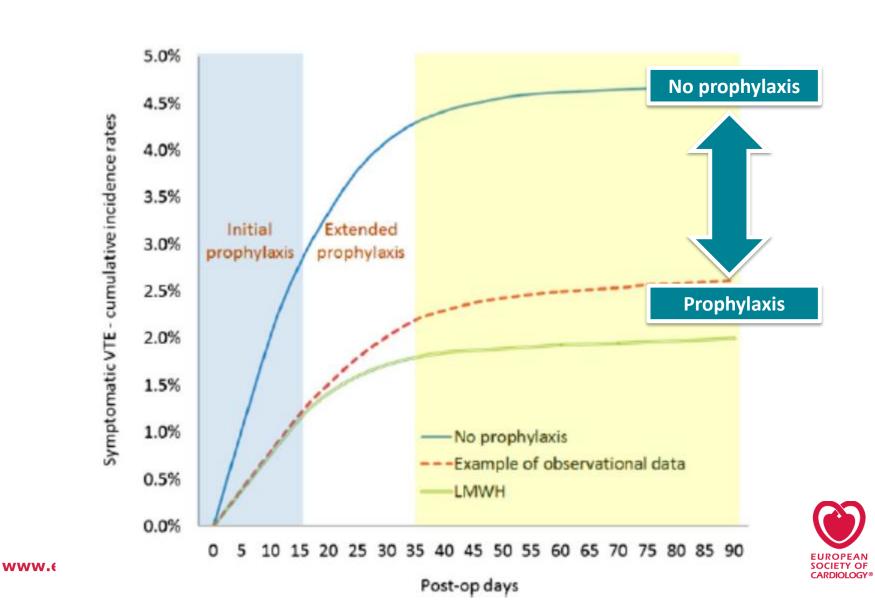
Righini et al., JAMA 2014

DULCIS: D-dimer Use in Determining Anticoagulant Treatment Duration for VTE

Composite of Confirmed Recurrent VTE and Death Caused by VTE



^{*}Total follow-up


[†]*P*=.0008 vs patients with negative D-dimer DULCIS = D-dimer and ULtrasonography in Combination Italian Study Palareti G, et al. *Blood*. 2014;124:196-203.

Diagnosis (direct thrombus evidence)

Compression Doppler Ultrasound

Major orthopaedic surgery

Major orthopaedic surgery

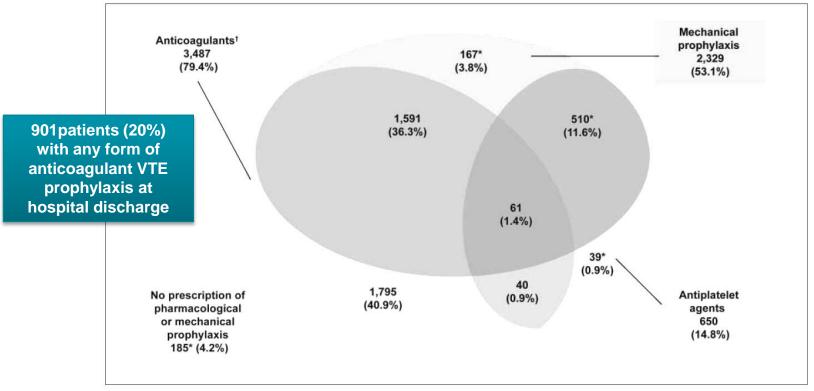
The success of thromboprophylaxis

Meta-analysis of randomized clinical trials and observational studies that reported rates of postoperative symptomatic VTE in patients who received recommended VTE prophylaxis after undergoing TPHA or TPKA.

44 844 cases provided by 47 studies

The pooled rates of symptomatic postoperative VTE before hospital discharge

```
1.09% (95% CI, 0.85% - 1.33%) for patients undergoing TPKA 0.53% (95% CI, 0.35% - 0.70%) for those undergoing TPHA 0.63% (95% CI, 0.47% - 0.78%) for knee arthroplasty 0.26% (95% CI, 0.14% - 0.37%) for hip arthroplasty
```



Major orthopaedic surgery

ETHOS observational study

17 European countries

4,388 eligible and assessable patients for the analysis of VTE prophylaxis prescribed

1,059 KA (24.1%) 2,217 THA (50.5%) 1,112 HFS (25.3%)

DVT in cancer patients

Symptomatic venous thromboembolism (VTE) occurs 4-7 times more frequently in cancer patients as compared to non-cancer patients

Patient-related factors

- Older age
- Gender (Female)
- Ethnic origin (higher in African Americans; lower in Asian-Pacific Islanders)
- Comorbidities (obesity, renal disease, pulmonary disease, neutropenia, infection)
- Prior history of venous thromboembolism
- Lower performance status
- Immobilisation
- Heritable prothrombotic mutations (Factor V Leiden, prothrombin gene mutation)

Cancer-related factors

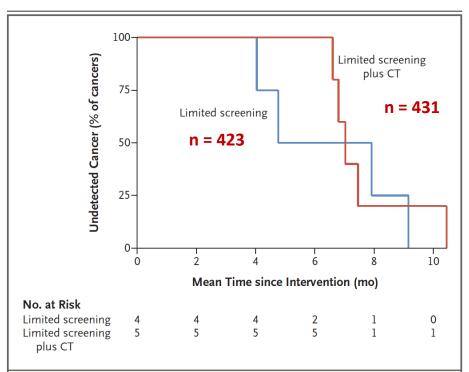
- Primary tumour site (pancreatic, ovarian, kidney, lung, gastric, brain, and haematologic)
- Histologic subtype (adenocarcinoma > squamous cell carcinoma)
- Locally advanced tumours/ distant metastases
- Initial period after diagnosis

DVT in cancer patients

Symptomatic venous thromboembolism (VTE) occurs 4-7 times more frequently in cancer patients as compared to non-cancer patients

Treatment-related factors

- Recent major surgery
- Hospitalisation
- Central venous catheters
- Chemotherapy
- Antiangiogenic agents (bevacizumab, sunitunib, sorafenib)
- Immonomodulatory drugs (thalidomide, lenalidomide)
- Hormonal therapy (tamoxifen)
- Erythropoietin
- Transfusions (platelets, red blood cells)



Screening for occult cancer

ORIGINAL ARTICLE

DOI: 10.1056/NEJMoa1506623

Screening for Occult Cancer in Unprovoked Venous Thromboembolism

ier, M.D., Sudeep Shivakumar, M.D.,

CONCLUSIONS

The prevalence of occult cancer was low among patients with a first unprovoked venous thromboembolism. Routine screening with CT of the abdomen and pelvis did not provide a clinically significant benefit.

Thrombophilia

Cause of death	Number of patients (%) (Total number n=78)
VTE, thereof:	∑ 4 (5 %)
Definite PE	3 (3.8 %)
Possible PE	1 (1.3 %)
Bleedings	4 (5 %)
Other causes	
Cardiovascular causes/heart failure	20 (26 %)
Malignancies	27 (35 %)
Trauma / accident /suicide	7 (9 %)
Others (e.g. pulmonary, renal causes, infection, long-term consequences of diabetes mellitus)	16 (21 %)
VTE – venous thromboembolism; PE – pulmonary embolism.	

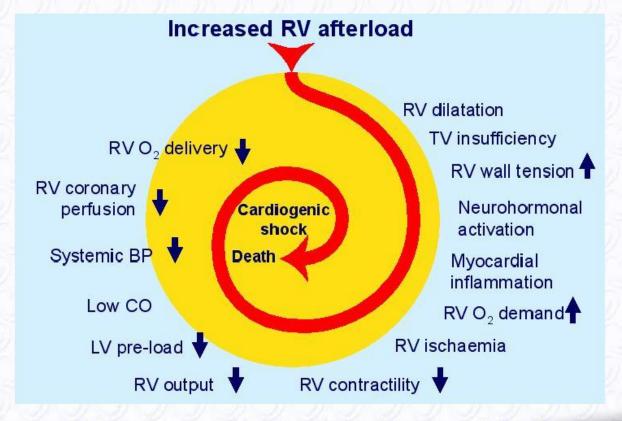
1905 with VTE944 with thrombophilia78 died (4.1%)

Thrombophilia

Table 4: Hazard ratios and 95 % confidence intervals for death (corrected for sex and age) regarding thrombophilia risk factors.

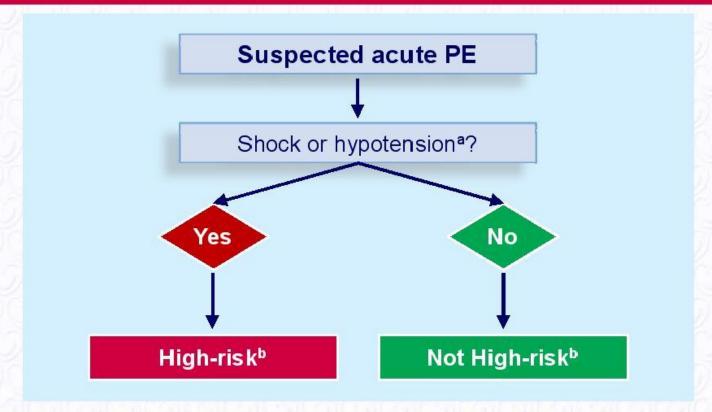
Parameter	HR	95 % CI
ATIII-, PC-, PS-deficiency (binary)	2.03	0.71 - 4.56
Factor V Leiden (binary)	0.81	0.46 - 1.35
Hyperhomocysteinaemia (linear)	1.02	0.98 – 1.05
Hyperhomocysteinaemia (binary)	1.98	1.08 – 3.48
Elevated FVIII (linear)	1.00	1.00 – 1.01
Elevated FVIII (binary)	1.27	0.78 - 2.05

ATIII — antithrombin III; PC — protein C; PS — protein S; FVIII — factor VIII; HR — hazard ratio; CI — confidence interval.


DVT and pulmonary embolism

1/3
of DVT
complicate with
a clot in the
lungs

Key factors contributing to haemodynamic collapse in acute pulmonary embolism



BP = blood pressure; CO = cardiac output; LV = left ventricular; RV = right ventricular; TV = tricuspid valve.

www.escardio.org/guidelines

Initial risk stratification of acute PE

- ^a Defined as systolic blood pressure <90 mmHg, or a systolic pressure drop by ≥40 mmHg, for >15 minutes, if not caused by new-onset arrhythmia, hypovolaemia, or sepsis.
- b Based on the estimated PE-related in-hospital or 30-day mortality.

www.escardio.org/guidelines

Classification of early mortality risk

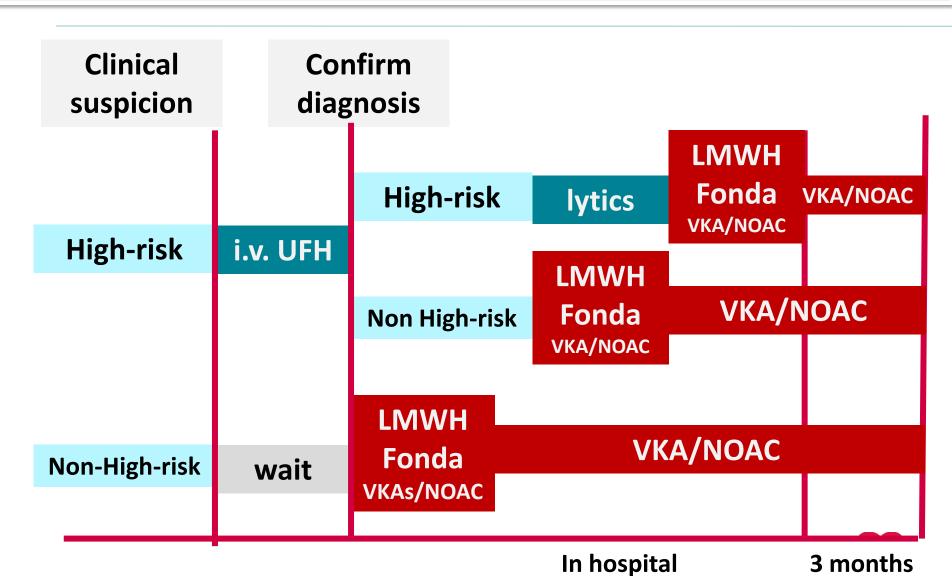
Early mortality risk		Risk parameters and scores				
		Shock or hypotension	PESI Class III-V or sPESI <u>></u> 1	Signs of RV dysfunction on an imaging test	Cardiac Iaboratory biomarkers	
High		. •	(+)	*	(+)	
land a summa altitude a	Intermediate- high	-	+	Both positive		
Intermediate Intermediate-		-	+	Either one (or none) positive		
Low		-	-	Assessment optional; if assesed, both negative		

www.escardio.org/guidelines

Original and simplified pulmonary embolism severity index (PESI)

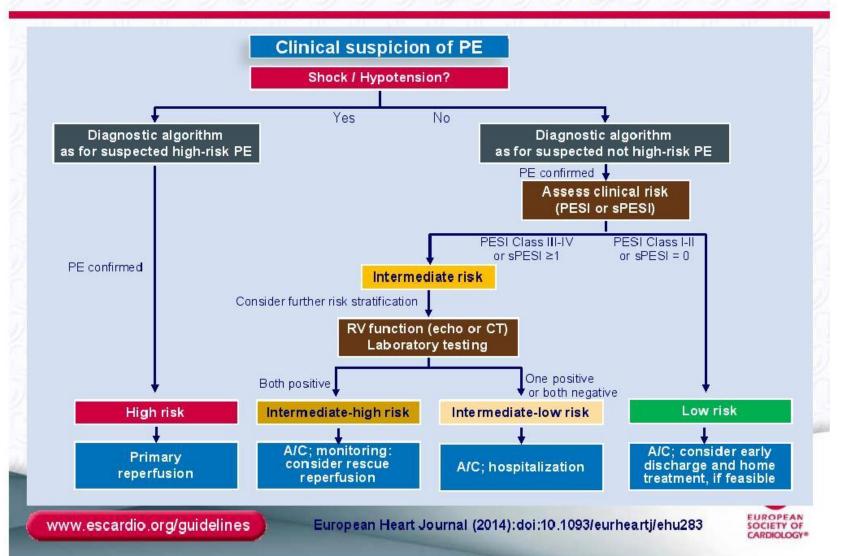
Parameter	Original version	Simplified version	
Age	Age in years	1 point (if age >80 years)	
Male sex	+10		
Cancer	+30	1	
Chronic heart failure	+10	3	
Chronic pulmonary disease	+10] '	
Pulse rate ≥110 b.p.m.	+20	1	
Systolic blood pressure <100 mmHg	+30	1	
Respiratory rate >30 breaths per minute	+20	-	
Temperature <36°C	+20		
Altered mental status	+60	-	
Arterial oxyhaemoglobin saturation <90%	+20	1	

www.escardio.org/guidelines


Original and simplified pulmonary embolism severity index (PESI)

Parameter	Original version	Simplified version	
	Risk strata		
	Class I: ≤65 points very low 30-day mortality risk (0-1.6%) Class II: 66-85 points low mortality risk (1.7-3.5%)	0 points = 30-day mortality risk 1.0% (95% CI 0.0%-2.1%)	
	Class III: 86-105 points moderate mortality risk (3.2-7.1%) Class IV: 106-125 points high mortality risk (4.0-11.4%) Class V: >125 points very high mortality risk (10.0-24.5%)	≥1 point(s) = 30-day mortality risk 10.9% (95% CI 8.5%-13.2%)	

www.escardio.org/guidelines



Standard of care for PE

EUROPEAN SOCIETY OF

Risk-adjusted management algorithm

Key messages

- Prophylaxis and early recognition are the keys to change the prognosis in patients with DVT
- The workflow is based on the risk stratification. The higher the risk more aggressive pharmacological treatment should be
- Antithrombotics mostly anticoagulants are very effective not only for prevention but also for treatment
- Pulmonary embolism should be prevented. The acute management is based on the level of risk

Many thanks

Understanding thrombosis in venous thromboembolism

João Morais

Head of Cardiology Division and Research Centre Leiria Hospital Centre Portugal

