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Deep Learning in CMR
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3. Image reconstruction | Segmentation of real-time CMR! images:
conventional, commercial Al, own Al?

We should stop training radiologists now. It's just completely obvious
that within five years, deep learning is going to do better than radiologists.

— Geoffrey Hinton, godfather of Al, 20163

1. Uecker M et al. NMR Biomed 23:986-994 (2010)
2. Schilling M et al. ESMRMB 2020, Magma 33:69-233 (2020)
3. Machine Learning and Market for Intelligence Conference in Toronto, 2016

https://www.youtube.com/watch?v=2HMPRXstSvQ
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Artificial Neural Networks
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input hidden layers output layer dense layer convolutional layer convolutional layer

A deep neural network is a chain of multi-variate vector-valued
functions f/(w’, p) which depend on weights w' and input p

hw()?n) _ fN(WN, fN—l(WN—lj . fl(wlﬁy)))



Deep Learning
Now: Training of large and deep artificial neural networks

Training data sets: (X",y"),n=1,--- /N
Feature vector X and continuous labels y

Loss function (e.g. least-squares): E(w) =" _||y" — h,(X")|5

Inference: Application of h to new data x = h(y)

All the impressive achievements of deep learning amount to just curve fitting.
— Judea Pearl, also a godfather of Al, 20181

1. https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/



Learning the Reconstruction

» Learn the complete reconstruction!

» Training data sets (x", y") of k-space and
Images

» For example: least-squares loss

E(w) = [IX" = hw(¥")I3

AUTOMAP (Automated Transform

. . . 1
» Image reconstruction: x = hy(y) by Manifold Approximation)

No, I’'m very impressed, because we did not expect that so many problems could be
solved by pure curve fitting. It turns out they can. — Judea Pearl

1. Zhu et al. Nature 555:487-492 (2018)



Image Reconstruction

State-of-the-art reconstruction based variational methods:!
x* = argmin, D(Fx,y) + R(x)
Data fidelity D, MRI physics: F, data y, regularization R
» Data fidelity term D ensures consistency with the acquired data.
» Regularization term stabilizes reconstruction using prior knowledge.

» Recent deep-learning methods also based on this approach!?

= Learned regularization term R

1. Fessler JA. arXiv:1903.03510 (2019)
2. Knoll F et al. IEEE SPI 37;128-140 (2020)



Image Reconstruction

Is the hype justified?



Misleading Results: Metrics

P Receive-coil arrays = No real ground truth
» FastMRI challenge:! RSS images as ground truth

= Background noise, no phase!

=- Comparison to conventional methods that try to approximate the

MVUE is then misleading:?

MoDL-MVUE MoDL-RSS PICS (L1-Wavelet) Zero-Filled

R=4 R=8 R=4 R=8 R=4 R=8 R=4

R=8

Test on MVUE [0.950 (38.3)]0.891 (31.3)[0.775 (33.1)|0.716 (29.5)|0.929 (37.6)|0.757 (26.8)|0.780 (27.0)

0.631 (22.5)

Teston RSS [0.782 (33.7)|0.723 (30.0)|0.945 (37.4)|0.895 (31.2)|0.751 (33.2)| 0.668 (26.7)0.793 (33.2)

0.662 (26.7)

Table 1. Average test SSIM (PSNR in parentheses) for the considered methods on fastMRI T2 brain scans.

1. Muckley MJ et al. IEEE TMI 37:2306-2317 (2020)
2. Arvinte M and Tamir J. ESMRMB MRITogether Workshop (2021)




Misleading Results: Data

» Public image data based may be preprocessed . )
PNAS  |mplicit Data Crimes

Machine Learning Bias Arising
from Misuse of Public Data

Efrat Shimron', Jonathan Tamir2, Ke Wang!, Michael Lustig!
UC Berkeley, 2UT Austin

= Misleadingly optimistic results!

Data crimes:!

The study reveals:

* Naive usage of Big Data can lead to biased, overly
optimistic results of image reconstruction algorithms
due to hidden data preprocessing pipelines.

* Canonical algorithms are vulnerable to this bias.

I m ageS Were Com pressed USi ng a |OSSIy .Form at * They also suffer from poor generalization to
unprocessed real-world data.
(JPEG)

» Data was zero-padded during reconstruction

1. Shimron E et al. PNAS 119:¢2117203119 (2019)



Comparison to Optimized Compressed Sensing Parallel Imaging

Fully-Sampled Optimized
Reference CG-SENSE £1-Wavelet
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NMSE: 0.085 NMSE: 0.011 NMSE: 0.012
SSIM: 0.695 SSIM: 0.839 SSIM: 0.838
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NMSE: 0.088 NMSE: 0.010 y NMSE: 0.011
SSIM: 0.656 - SSIM: 0.823 . SSIM: 0.826

Comparison of deep-learning method to conventional methods and
optimized compressed sensing parallel imaging’

1. Gu U et el. ISMRM 20:274 (2021)



Hallucinations

» Perfectly looking images do not reveal
if available data are insufficient.

Ground Truth Reconstruction Residual
0.964
» Problem: Artificial image features ‘o
learned during training appear in the A
reconstruction.
0.938
» No surprise: Generative models can
produce realistic images from nothing.
» Data fidelty should help if acquired \ 09385 e
data are sufficient. k=
= 4

Hallucinations observed in the

FastMRI challenge.?
1. Muckley MJ et al. IEEE TMI 37:2306-2317 (2020)




Image Reconstruction

Is there hope?



Reconstruction as Bayesian Inference

o L2y
Likelihood: p(y|x) = det(al) ze T 2(0—Fli3
(non-linear) physics-based forward model F, data y, noise covariance matrix I
Prior: p(x) =--- (e.g. sparsity, learned priors)

ply|x)p(x)

() via Bayes' theorem

Posterior: p(x|y) =

Data fidelity: D(Fx,y) = — log p(y|x) (neg. log-likelihood)
Regularization: R(x) = — log p(x) (neg. prior)

argmin, D(Fx, y) + R(x)

Regularized reconstruction < Maximum a posteriori probability (MAP)



Uncertainty Quantification

Sampling the posterior using MCMC = MMSE, uncertainty

1-4

Euler-Maruyama: x,+1 = x, + 2V log p(x|y) + vz (z Gaussian noise)
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Variance map quantifies uncertainty.?-3

Jalal A et al. NeurlPS 2021

Luo G et al. arXiv:2202.01479 (2022)
Luo G et al. ISMRM 30:0298 (2022)

others...



CMR Imaging

The future of CMR:
» Free-breathing and self-gated dynamic imaging

» High-dimensional + multi-parametric

= Ground truth images may be impossible to acquire.



Self-Supervised Learning

» Self-supervised learning from k-space
» NonLinear INVersion (NLINV): autocalibration, arbitrary sampling patterns
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» Application to cardiac real-time with radial acquisition®
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network architecture 39 radial spokes per frame

1. Yaman B et al MRM 84:3172-3191 (2020)
2. Uecker M et al. MRM 60:674-682 (2008)

3. Blumenthal M et al. ISMRM 2022; 30:499.



Conclusion

» Published results are sometimes misleading.
» Perfectly looking images might be wrong.

» Progress is incremental but real.

Needed:
» Methods based on sound principles
» More focus on scientific understanding
» Open data sets and benchmarks

» Reproducible research based on free and open software

I- BART Toolbox for Computational MRI
J https://mrirecon.github.io/bart/



