Al for CMR standardization - Technique Talk II:

Deep Learning Image Reconstruction: Hope or Hype?

Martin Uecker

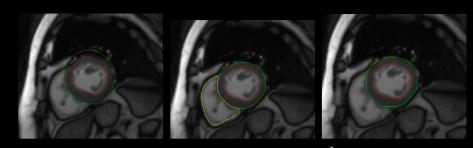
- 1. Institute of Biomedical Imaging, Graz University of Technology
 - 2. Institute for Diagnostic and Interventional Radiology
 - University Medical Center Göttingen
- 3. German Center for Cardiovascular Research (DZHK), Partner Site Göttingen

Declaration of Interest

Co-inventor of patent for Real-time MRI.

Deep Learning in CMR

- 1. Segmentation ✓
- 2. Automatic diagnosis?
- 3. Image reconstruction!



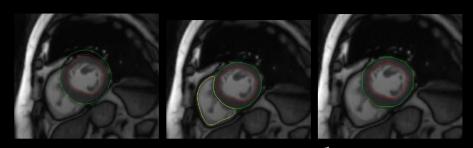
Segmentation of real-time CMR¹ images: conventional, commercial AI, own AI²

We should stop training radiologists now. It's just completely obvious that within five years, deep learning is going to do better than radiologists.

- Geoffrey Hinton, godfather of AI, 2016^3
- 1. Uecker M et al. NMR Biomed 23:986-994 (2010)
- 2. Schilling M et al. ESMRMB 2020, Magma 33:69-233 (2020)
- 3. Machine Learning and Market for Intelligence Conference in Toronto, 2016 https://www.youtube.com/watch?v=2HMPRXstSvQ

Deep Learning in CMR

- 1. Segmentation ✓
- 2. Automatic diagnosis?
- 3. Image reconstruction!

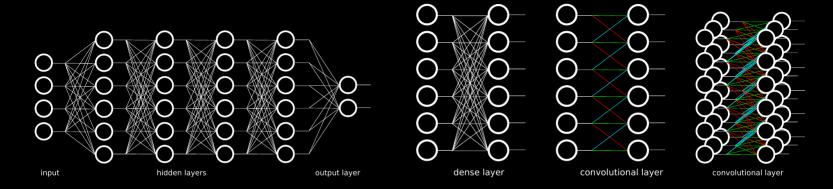


Segmentation of real-time CMR¹ images: conventional, commercial AI, own AI²

We should stop training radiologists now. It's just completely obvious that within five years, deep learning is going to do better than radiologists.

- Geoffrey Hinton, godfather of AI, 2016^3
- 1. Uecker M et al. NMR Biomed 23:986-994 (2010)
- 2. Schilling M et al. ESMRMB 2020, Magma 33:69-233 (2020)
- **3.** Machine Learning and Market for Intelligence Conference in Toronto, 2016 https://www.youtube.com/watch?v=2HMPRXstSvQ

Artificial Neural Networks



A deep neural network is a chain of multi-variate vector-valued functions $f^{l}(w^{l}, p)$ which depend on weights w^{l} and input p

$$h_w(\vec{y}^n) = f^N(w^N, f^{N-1}(w^{N-1}, \cdots f^1(w^1, y)))$$

Deep Learning

Now: Training of large and deep artificial neural networks

Training data sets: (\vec{x}^n, \vec{y}^n) , $n = 1, \dots, N$ Feature vector \vec{x} and continuous labels \vec{y}

Loss function (e.g. least-squares): $E(w) = \sum_n ||\vec{y}^n - h_w(\vec{x}^n)||_2^2$

Inference: Application of h to new data x = h(y)

All the impressive achievements of deep learning amount to just curve fitting.

– Judea Pearl, also a godfather of Al, 2018¹

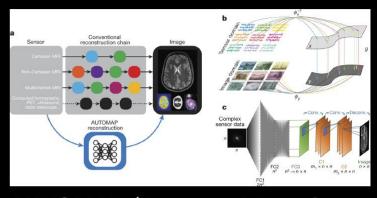
1. https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

Learning the Reconstruction

- ► Learn the complete reconstruction¹
- ► Training data sets (x^n, y^n) of k-space and images
- ► For example: least-squares loss

$$E(w) = \sum_{n} \|\vec{x}^{n} - h_{w}(\vec{y}^{n})\|_{2}^{2}$$

▶ Image reconstruction: $x = h_w(y)$



AUTOMAP (Automated Transform by Manifold Approximation)¹

No, I'm very impressed, because we did not expect that so many problems could be solved by pure curve fitting. It turns out they can. – Judea Pearl

1. Zhu et al. Nature 555:487-492 (2018)

Image Reconstruction

State-of-the-art reconstruction based variational methods:¹

$$x^* = \operatorname{argmin}_x \mathcal{D}(Fx, y) + \mathcal{R}(x)$$

Data fidelity \mathcal{D} , MRI physics: F, data y, regularization \mathcal{R}

- ightharpoonup Data fidelity term $\mathcal D$ ensures consistency with the acquired data.
- Regularization term stabilizes reconstruction using prior knowledge.
- ► Recent deep-learning methods also based on this approach!²
- \Rightarrow Learned regularization term \mathcal{R}
- 1. Fessler JA. arXiv:1903.03510 (2019)
- **2.** Knoll F et al. IEEE SPI 37;128–140 (2020)

Image Reconstruction

Is the hype justified?

Misleading Results: Metrics

- ▶ Receive-coil arrays ⇒ No real ground truth
- ► FastMRI challenge: 1 RSS images as ground truth
- \Rightarrow Background noise, no phase¹
- ⇒ Comparison to conventional methods that try to approximate the MVUE is then misleading:²

	MoDL-MVUE		MoDL-RSS		PICS (L1-Wavelet)		Zero-Filled	
	R = 4	R = 8	R = 4	R = 8	R = 4	R = 8	R = 4	R = 8
Test on MVUE	0.950 (38.3)	0.891 (31.3)	0.775 (33.1)	0.716 (29.5)	0.929 (37.6)	0.757 (26.8)	0.780 (27.0)	0.631 (22.5)
Test on RSS	0.782 (33.7)	0.723 (30.0)	0.945 (37.4)	0.895 (31.2)	0.751 (33.2)	0.668 (26.7)	0.793 (33.2)	0.662 (26.7)

Table 1. Average test SSIM (PSNR in parentheses) for the considered methods on fastMRI T2 brain scans

- 1. Muckley MJ et al. IEEE TMI 37:2306–2317 (2020)
- 2. Arvinte M and Tamir J. ESMRMB MRITogether Workshop (2021)

Misleading Results: Data

- ► Public image data based may be preprocessed
- \Rightarrow Misleadingly optimistic results¹

Data crimes:1

- Data was zero-padded during reconstruction
- Images were compressed using a lossly format (JPEG)

1. Shimron E et al. PNAS 119:e2117203119 (2019)

PNAS

Implicit Data Crimes

Machine Learning Bias Arising from Misuse of Public Data

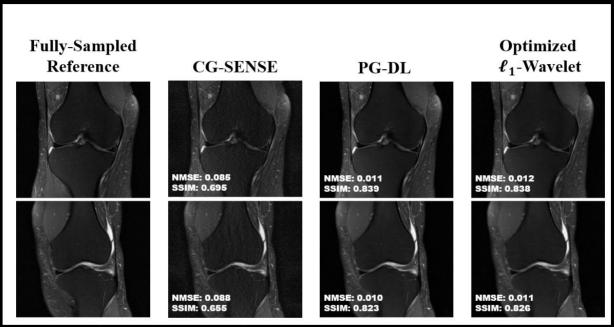
Efrat Shimron¹, Jonathan Tamir², Ke Wang¹, Michael Lustig¹

¹UC Berkeley, ²UT Austin

The study reveals:

- Naive usage of Big Data can lead to biased, overly optimistic results of image reconstruction algorithms due to hidden data preprocessing pipelines.
- · Canonical algorithms are vulnerable to this bias.
- They also suffer from poor generalization to unprocessed real-world data.

Comparison to Optimized Compressed Sensing Parallel Imaging

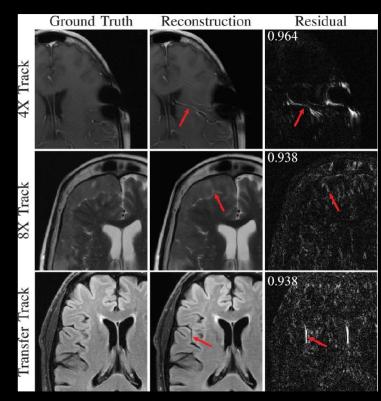


Comparison of deep-learning method to conventional methods and optimized compressed sensing parallel imaging¹

1. Gu U et el. ISMRM 20:274 (2021)

Hallucinations

- Problem: Artificial image features learned during training appear in the reconstruction.
- No surprise: Generative models can produce realistic images from nothing.
- ▶ Data fidelty should help if acquired data are sufficient.
- Perfectly looking images do not reveal if available data are insufficient.



Hallucinations observed in the FastMRI challenge.¹

1. Muckley MJ et al. IEEE TMI 37:2306–2317 (2020)

Image Reconstruction

Is there hope?

Reconstruction as Bayesian Inference

Likelihood:
$$p(y|x) = det(\pi\Gamma)^{-\frac{1}{2}}e^{-\|\Gamma^{-\frac{1}{2}}(y-Fx)\|_{2}^{2}}$$

(non-linear) physics-based forward model F, data y, noise covariance matrix Γ

Prior: $p(x) = \cdots$ (e.g. sparsity, learned priors)

Posterior: $p(x|y) = \frac{p(y|x)p(x)}{p(y)}$ via Bayes' theorem

Data fidelity: $\mathcal{D}(Fx, y) = -\log p(y|x)$ (neg. log-likelihood)

Regularization: $\mathcal{R}(x) = -\log p(x)$ (neg. prior)

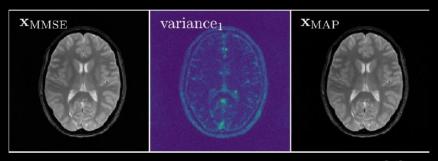
$$\operatorname{argmin}_{x} \mathcal{D}(Fx, y) + \mathcal{R}(x)$$

Regularized reconstruction \Leftrightarrow Maximum a posteriori probability (MAP)

Uncertainty Quantification

Sampling the posterior using MCMC \Rightarrow MMSE, uncertainty¹⁻⁴

Euler-Maruyama: $x_{n+1} = x_n + \frac{\gamma}{2} \nabla \log p(x|y) + \gamma z$ (z Gaussian noise)



Variance map quantifies uncertainty. 2,3

- 1. Jalal A et al. NeurIPS 2021
- **2.** Luo G et al. arXiv:2202.01479 (2022)
- **3.** Luo G et al. ISMRM 30:0298 (2022)
- 4. others...

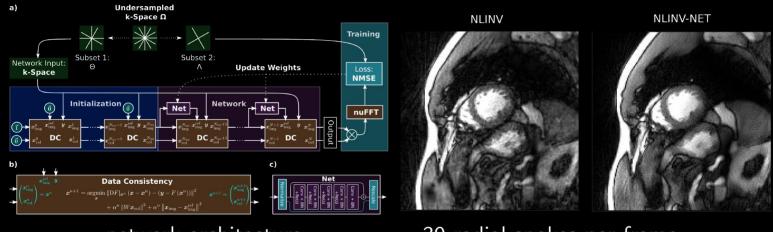
CMR Imaging

The future of CMR:

- ► Free-breathing and self-gated dynamic imaging
- ► High-dimensional + multi-parametric
- ⇒ Ground truth images may be impossible to acquire.

Self-Supervised Learning

- ► Self-supervised learning from k-space¹
- ► NonLinear INVersion (NLINV): autocalibration, arbitrary sampling patterns²
- ► Application to cardiac real-time with radial acquisition³



network architecture

39 radial spokes per frame

- 1. Yaman B et al MRM 84:3172-3191 (2020)
- 2. Uecker M et al. MRM 60:674-682 (2008)
- **3.** Blumenthal M et al. ISMRM 2022; 30:499.

Conclusion

- Published results are sometimes misleading.
- Perfectly looking images might be wrong.
- Progress is incremental but real.

Needed:

- ► Methods based on sound principles
- ► More focus on scientific understanding
- Open data sets and benchmarks
- Reproducible research based on free and open software

BART Toolbox for Computational MRI https://mrirecon.github.io/bart/