In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.
Did you know that your browser is out of date? To get the best experience using our website we recommend that you upgrade to a newer version. Learn more.

We use cookies to optimise the design of this website and make continuous improvement. By continuing your visit, you consent to the use of cookies. Learn more

Hemoglobin Directs Macrophage Differentiation and Prevents Foam Cell Formation in Human Atherosclerotic Plaques

Cardiovascular Pharmacology and Pharmacotherapy

Aloke Finn Aloke Finn (United States of America)

Presentation slides


Background: Macrophage subsets are recognized in atherosclerosis but the stimulus for and importance of differentiation programs remains unknown.

Objectives: To examine selective macrophage differentiation occurring in areas of intraplaque hemorrhage in human atherosclerosis.

Methods: We used freshly isolated human monocytes, a rabbit model, and human atherosclerotic plaques to analyze macrophage differentiation in response to hemorrhage.

Results: Macrophages characterized by high expression of both mannose and CD163 receptors preferentially exist in atherosclerotic lesions at sites of intraplaque hemorrhage. These hemoglobin (Hb)-stimulated macrophages, M(Hb), are devoid of neutral lipids typical of foam cells. In vivo modeling of hemorrhage in the rabbit model demonstrated that sponges exposed to red cells showed an increase in mannose receptor positive macrophages only when these cells contained hemoglobin (Hb).
Cultured human monocytes exposed to hemoglobin:haptoglobin complexes (Hb:Hp), but not IL-4, expressed the M(Hb) phenotype and were characterized by their resistance to cholesterol loading and upregulation of ABC transporters. M(Hb) demonstrated increased ferroportin (FPN) expression, reduced intracellular iron, and reactive oxygen species (ROS).
Degradation of FPN using hepcidin increased ROS, inhibited ABCA1 expression, and cholesterol efflux to ApoAI, suggesting reduced ROS triggers these effects. Knockdown of liver x receptor alpha (LXRα) inhibited ABC transporter expression in M(Hb) and macrophages differentiated in the anti-oxidant superoxide dismutase. Lastly, liver X receptor α (LXR) luciferase reporter activity was increased in M(Hb) and significantly reduced by overnight treatment with hepcidin. Collectively, these data suggest reduced ROS triggers LXRα activation and macrophage reverse cholesterol transport (RCT).

Conclusions: Hb is a stimulus for macrophage differentiation in human atherosclerotic plaques. A reduction of macrophage intracellular iron plays an important role in this non- foam cell phenotype by reducing ROS, which drives transcription of ABC transporters through activation of LXRα. Reduction of macrophage intracellular iron may be a promising avenue to increase macrophage RCT.




Basic and Translational Science Hot Line

The content of this article reflects the personal opinion of the author/s and is not necessarily the official position of the European Society of Cardiology.