
Biolimus-Eluting Stent With Biodegradable Polymer Versus Sirolimus-Eluting Stent With Durable Polymer: A Randomised, Non-Inferiority Trial

Stephan Windecker, Patrick W. Serruys, Simon Wandel,
Pawel Buszman, Stanislaw Trznadel, Axel Linke, Karsten Lenk,
Thomas Ischinger, Volker Klauss, Franz Eberli, Roberto Corti,
William Wijns, Marie-Claude Morice, Carlo di Mario,
Simon Davies, Robert-Jan van Geuns, Pedro Eerdmans,
Gerrit-Anne van Es, Bernhard Meier and Peter Jüni

Funded by Biosensors Europe S.A., Switzerland

Biolimus-A9TM Eluting Stent

- Biolimus is a semi-synthetic sirolimus analogue with 10x higher lipophilicity and similar potency as sirolimus.
- Biolimus is immersed at a concentration of 15.6 μg/mm into a biodegradable polymer, polylactic acid, and applied solely to the abluminal stent surface by a fully automated process.
- Polylactic acid is co-released with biolimus and completely desolves into carbon dioxide and water during a 6-9 months period.
- The stainless steel stent platform has a strut thickness of 112 μm with a quadrature link design.

Flow of Patients

-Randomised, N=1707 -

Biolimus Eluting Stent 857 Patients

Angio F/U
-213 pts
-326 lesions

No Angio F/U -644 pts

-931 lesions

Clinical F/U @ 9 months

846 pts, 1243 lesions

-withdrawal: 9 pts

-lost to f/u: 2 pts

Angio F/U @ 9 months 168 pts, 255 lesions -excluded: 45 pts, 71 lesions 9 Months Clinical F/U N=1,689

(98.8%)

9 Months Angio F/U N=335

(78.5%)

Sirolimus Eluting Stent 850 Patients

Angio F/U
-214 pts
-293 lesions

No Angio F/U
-636 pts
-922 lesions

Clinical F/U @ 9 Months 840 pts, 1202 lesions

-withdrawal: 4 pts -lost to f/u: 6 pts

> Angio F/U @ 9 months 167 pts, 233 lesions -excluded: 47 pts, 60 lesions

Patient Eligibility

Inclusion Criteria

Exclusion Criteria

Coronary artery disease

- Stable angina
- Silent ischemia
- Acute coronary syndrome including UA, NSTEMI and STEMI

At least one lesion with

- Diameter stenosis ≥ 50%
- RVD: 2.25-3.5 mm
- Number of lesions: no limitation
- Number of vessels: no limitation
- -Vessel length: no limitation

Written informed consent

Known allergy to

- aspirin, clopidogrel, heparin, stainless steel, sirolimus, biolimus, contrast material

Planned, elective surgery within 6 months of PCI unless

- dual APT could be maintained

Pregnancy

Participation in another trial

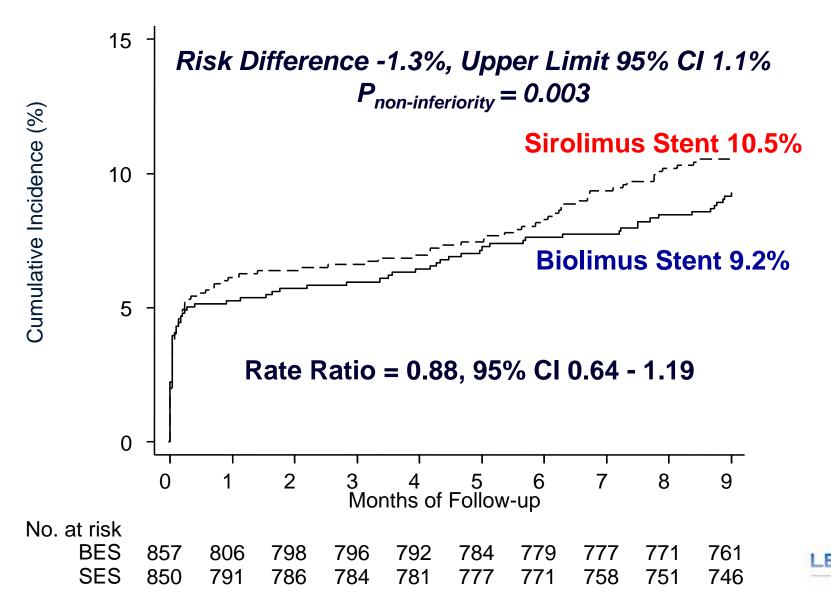
Endpoints

Primary Clinical Endpoint

- Cardiac death, MI, or clinically-indicated TVR @ 9 months
 - Diameter stenosis <u>></u>50% with ischemic signs or symptoms
 - Diameter stenosis ≥70% in the absence of symptoms
- Assumed event rate @ 9 months: 8% in both arms (based on BASKET and SIRTAX)
- Non-inferiority margin = 4%, one sided α = 0.05
- 1700 patients
 90% power

Principal Angiographic Endpoint

- In-stent percent diameter stenosis @ 9 months
- Assumed % DS = 23 ± 16% in both arms (REALITY trial)
- Non-inferiority margin = 5%, average number of 1.5 lesions, 30% of allocated patients without analysable angiogram, one sided α = 0.05
- 1:3 random sample of 425 patients



Patient Characteristics

	Biolimus Stent	Sirolimus Stent
	857 Patients	850 Patients
Acute coronary syndrome	55%	56%
- Unstable angina	22%	20%
- Non-ST-elevation MI	18%	19%
- ST-elevation MI	16%	17%
Left ventricular ejection fraction	56 ± 11%	55 ± 12%
Number of lesions per patient	1.5 ± 0.7	$\textbf{1.4} \pm \textbf{0.7}$
Lesions per patient		
- 1 lesion	63%	69%
- 2 lesions	29%	22%
- 3 lesions	7%	8%
- > 4 lesions	1%	2%
De novo lesions	92%	91%
Long lesions (>20 mm)	31%	27%
Small vessels (RVD <u><</u> 2.75 mm)	68%	69%
Off label use	81%	78%

Primary Endpoint

Cardiac Death, MI, or TVR @ 9 months

Stratified Analysis of Primary Endpoint

Biolimus Sirolimus Risk Ratio (95% CI) P Value

				,	
Overall	79/857	89/850	0.88 (0.64-1.19)	H ai H	
Diabetes mellitus				0-40	
Yes	31/223	26/191	1.03 (0.61-1.75)	⊢#-	
No	48/634	63/659	0.78 (0.54-1.14)	H ⊞ ∳I	
Acute coronary synd	rome			0-40	
Yes	38/470	49/473	0.77(0.50-1.18)	⊢ ≣ ∺	
No	41/387	40/377	1.00 (0.64-1.56)	⊢	
ST-elevation MI				0-020)
Yes	8/135	21/140	0.37 (0.16-0.84)	⊢-≣- ¦	
No	71/722	68/710	1.03 (0.74-1.44)	H ≜ H	
Left anterior descend	ling			0.52	
Yes	34/407	44/417	0.78 (0.50-1.23)	⊢≣ ;⊣	
No	45/449	45/431	0.96 (0.63-1.46)	⊢≣ -1	
Multivessel disease				0.93	
Yes	26/209	25/176	0.88 (0.50-1.54)	⊢ ■	
No	53/648	64/674	0.85 (0.59-1.23)	H ≣ H	
Off-label use				0.91	
Yes	71/696	78/665	0.86 (0.62-1.19)	H≣H	
No	8/160	11/183	0.84 (0.33-2.09)	⊢	
De-novo lesions				0.14	
Yes	67/788	81/774	0.81 (0.58-1.12)	H am i	
No	12/68	8/74	1.64 (0.67-4.01)	□ ■	
Small-vessel disease				0.15	
Yes	61/585	59/568	1.00 (0.70-1.44)	H ≜ H	
No	18/271	30/280	0.61 (0.34-1.10)	⊢ ■	
Long lesions			, ,	0.91	
Yes	35/262	34/225	0.89 (0.55-1.44)	⊢	
No	44/594	55/623	0.84 (0.56-1.25)	H = H	
			-,		
				0.25 0.5 1 2 4	
				Date of Control CD	

Rate ratio (95% CI)

Angiographic Follow-up Results

	Biolimus Stent 255 lesions	Sirolimus Stent 233 lesions	P *
MLD			
in-stent (mm)	2.23 ± 0.64	2.11 ± 0.70	80.0
in-segment (mm)	2.01 ± 0.59	1.87 ± 0.64	0.03
Diameter stenosis			
in-stent (%)	20.9 ± 17.5	23.3 ± 19.6	0.26
in-segment (%)	27.1 ± 16.4	29.9 ± 18.5	0.14
Late lumen loss			
in-stent (mm)	0.13 ± 0.46	0.19 ± 0.50	0.34
in-segment (mm)	0.08 ± 0.45	0.15 ± 0.46	0.12
Binary restenosis			
in-stent (%)	5.5	8.7	0.20
in-segment (%)	6.7	10.8	0.15

^{*} P values for superiority

Conclusions

- The biolimus eluting stent with abluminal biodegradable polymer compared against the sirolimus eluting stent with durable polymer resulted in non-inferior safety, efficacy and angiographic outcome at 9 months.
- Since non-inferiority was achieved for the clinical and angiographic outcome measures in a non-restricted patient population with predominant off-label characteristics, the findings of the present study provide a high level of generalisability to routine clinical practice.
- Longer term follow-up will be necessary to determine potential differences in late stent thrombosis related to biodegradable as opposed to durable polymer for drug release.