North American Perspective and Specificities

Douglas L. Packer MD

EHRA Retreat Meeting Heart House March 26, 2014

#### **Disclosures**

Dr. D. Packer in the past 12 months has provided consulting services for Biosense Webster, Inc., Boston Scientific, CyberHeart, Medtronic, Inc., nContact, Sanofi-Aventis, St. Jude Medical, and Toray Industries. Dr. Packer received no personal compensation for these consulting activities.

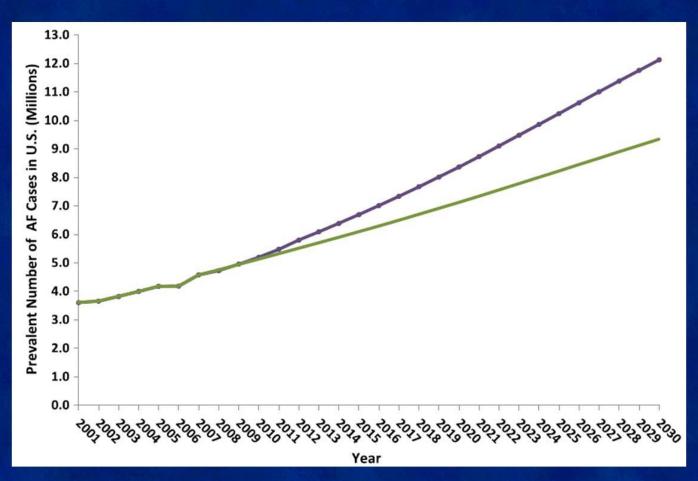
Dr. Packer receives research funding from the NIH, Medtronic, Inc., Cryo Cath, Siemens AG, EP Limited, Minnesota Partnership for Biotechnology and Medical Genomics/ University of Minnesota, Biosense Webster, Inc. and Boston Scientific.

Mayo Clinic and Drs. D. Packer and R. Robb have a financial interest in mapping technology that may have been used at some of the 10 centers participating in this pilot research. In accordance with the Bayh-Dole Act, this technology has been licensed to St. Jude Medical, and Mayo Clinic and Drs. Packer and Robb received annual royalties >\$10,000, the federal threshold for significant financial interest.

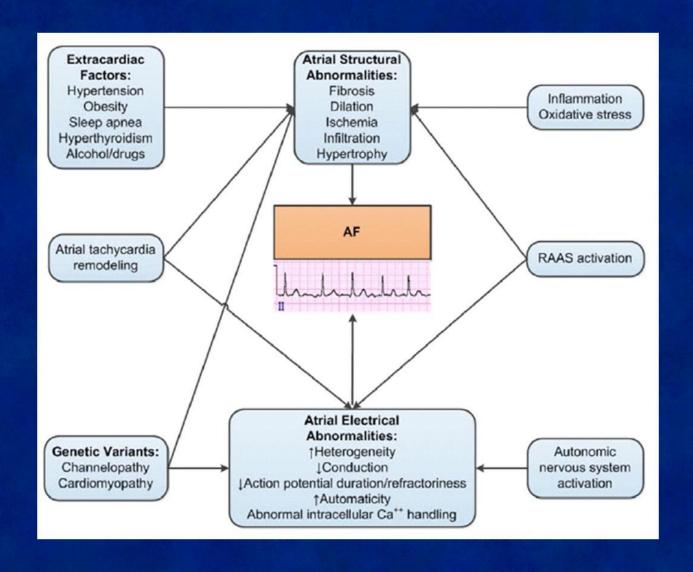
North American Perspective and Specificities

North American
Risk Considerations




## North American Perspective and Specificities

Contributors of AF occurrence Prevalence of AF occurrence / risk Stroke and other risks **Contributors of Obesity and OSA** Prevalence of unknown or cryptogenic AF and Preventing risk of stroke in the absence of known AF Role of monitoring in finding AF Risk that AF isn't a risk Risks of dementia / cognitive impairment Hospitalization, Cost, Quality of life risks Risk of prevention of AF related stroke (NOACs / LAAO) Risk of Drug and Ablative therapy


North American Perspective and Specificities

Contributors to AF
Occurrence

# Projected Prevalence of Diagnosed AF Cased in US from 2001 to 2030, Assuming No Increase in Incidence Rate After 2007 and a Logarithmic Growth in AF Incidence



#### **Mechanisms of AF**



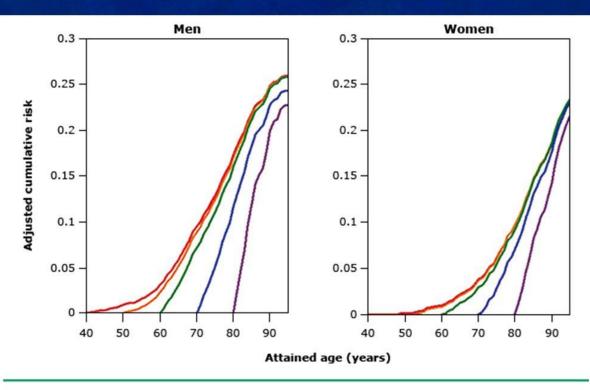
THROMBOEMBOLISM

#### Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach

The Euro Heart Survey on Atrial Fibrillation

Gregory Y. H. Lip, MD; Robby Nieuwlaat, PhD; Ron Pisters, MD; Deirdre A. Lane, PhD; and Harry J. G. M. Crijns, MD

Background: Contemporary clinical risk stratification schemata for predicting stroke and thromboembolism (TE) in patients with atrial fibrillation (AF) are largely derived from risk factors identified from trial cohorts. Thus, many potential risk factors have not been included.

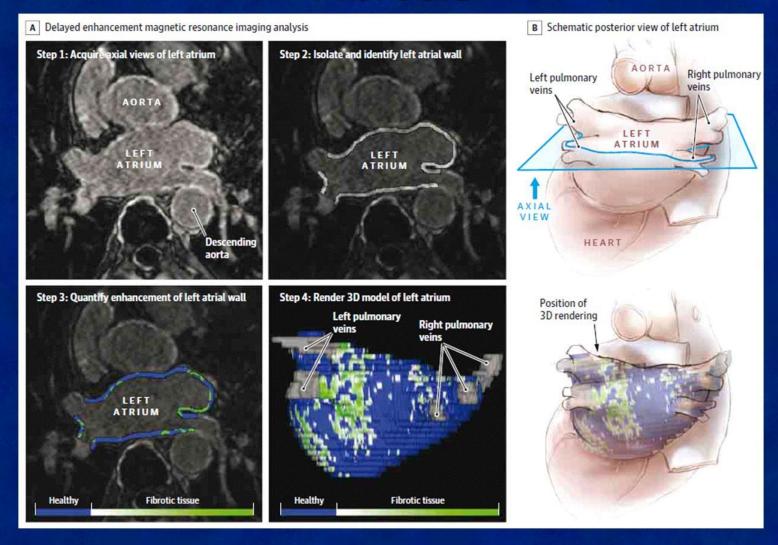

Methods: We refined the 2006 Birmingham/National Institute for Health and Clinical Excellence (NICE) stroke risk stratification schema into a risk factor-based approach by reclassifying and/or incorporating additional new risk factors where relevant. This schema was then compared with existing stroke risk stratification schema in a real-world cohort of patients with AF (n = 1,084) from the Euro Heart Survey for AF.

Results: Risk categorization differed widely between the different schemes compared. Patients classified as high risk ranged from 10.2% with the Framingham schema to 75.7% with the Birmingham 2009 schema. The classic CHADS $_2$  (Congestive heart failure, Hypertension, Age > 75, Diabetes, prior Stroke/transient ischemic attack) schema categorized the largest proportion (61.9%) into the intermediate-risk strata, whereas the Birmingham 2009 schema classified 15.1% into this category. The Birmingham 2009 schema classified only 9.2% as low risk, whereas the Framingham scheme categorized 48.3% as low risk. Calculated C-statistics suggested modest predictive value of all schema for TE. The Birmingham 2009 schema fared marginally better (C-statistic, 0.606) than CHADS $_2$ . However, those classified as low risk by the Birmingham 2009 and NICE schema were truly low risk with no TE events recorded, whereas TE events occurred in 1.4% of low-risk CHADS $_2$  subjects. When expressed as a scoring system, the Birmingham 2009 schema (CHA $_2$ DS $_2$ -VASc acronym) showed an increase in TE rate with increasing scores (P value for trend = .003).

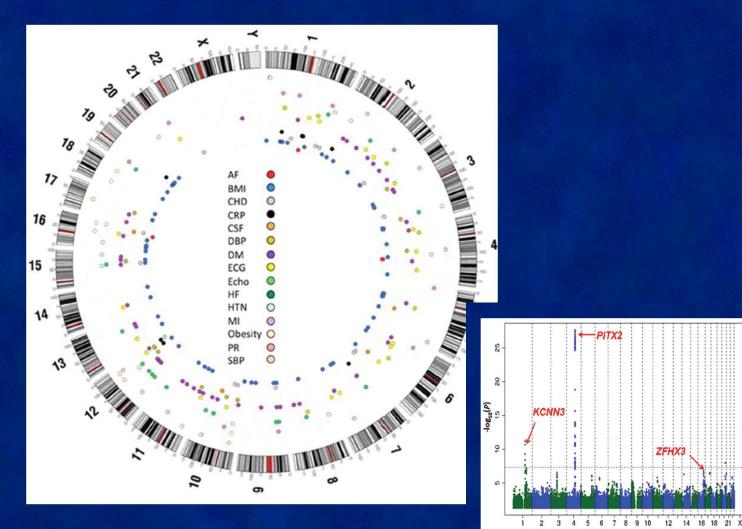
Conclusion: Our novel, simple stroke risk stratification schema, based on a risk factor approach, provides some improvement in predictive value for TE over the CHADS<sub>2</sub> schema, with low event rates in low-risk subjects and the classification of only a small proportion of subjects into the intermediate-risk category. This schema could improve our approach to stroke risk stratification in patients with AF.

CHEST 2010; 137(2):263–272

#### Prevalence of AF by Sex and Age



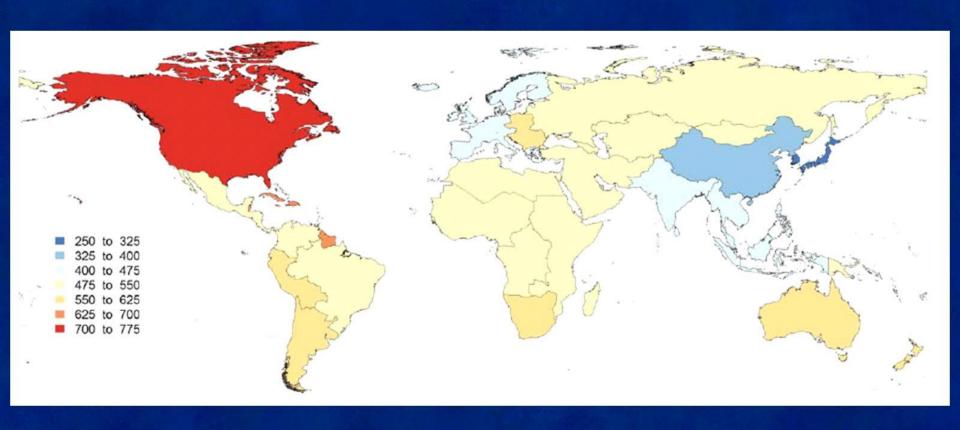

Lifetime risk for developing atrial fibrillation (AF) from the Framingham Heart Study. Men and women without AF at 40 years of age were determined to have a 26 and 23 percent likelihood of developing incident AF by 80 years of age.


Reproduced with permission from: Magnani JW, Rienstra M, Lin H, et al. Atrial fibrillation: Current knowledge and future directions in epidemiology and genomics. Circulation 2011; 124:1982.

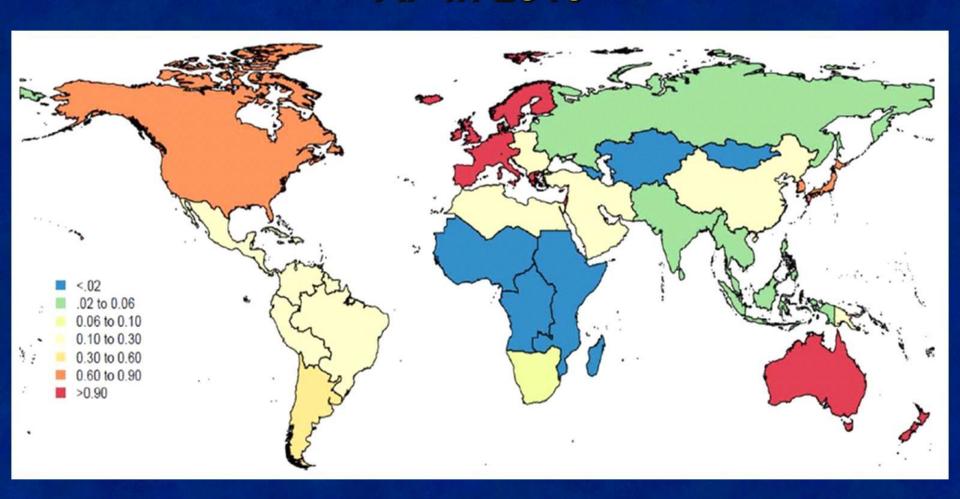
Copyright © Lippincott Williams & Wilkins.

### Process for Quantification of Left Atrial Wall Fibrosis

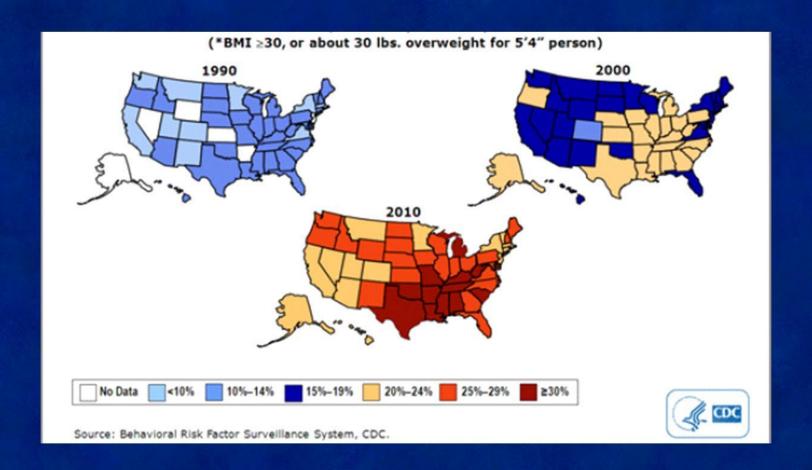



## Circos Plot Representing the Genetic Variants Found by Genome-wide Association Study for AF and AF Risk Factors




North American Perspective and Specificities

Obesity and OSA


### Prevalence of AF and Aflutter by Region, 2010



### Proportion of Global Deaths Associated with AF in 2010



### Obesity Trends Among US Adults BRFSS, 1990, 2000, 2010



North American Perspective and Specificities

Risks of Stroke and Other Disasters

**THROMBOEMBOLISM** 

#### Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach

The Euro Heart Survey on Atrial Fibrillation

Gregory Y. H. Lip, MD; Robby Nieuwlaat, PhD; Ron Pisters, MD; Deirdre A. Lane, PhD; and Harry J. G. M. Crijns, MD

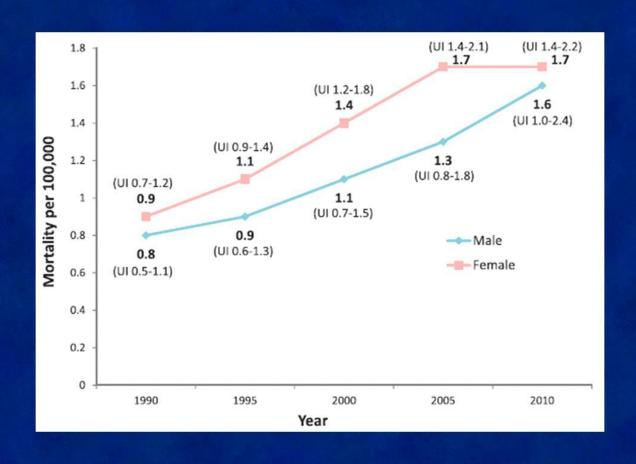
Background: Contemporary clinical risk stratification schemata for predicting stroke and thromboembolism (TE) in patients with atrial fibrillation (AF) are largely derived from risk factors identified from trial cohorts. Thus, many potential risk factors have not been included.

Methods: We refined the 2006 Birmingham/National Institute for Health and Clinical Excellence (NICE) stroke risk stratification schema into a risk factor-based approach by reclassifying and/or incorporating additional new risk factors where relevant. This schema was then compared with existing stroke risk stratification schema in a real-world cohort of patients with AF (n = 1,084) from the Euro Heart Survey for AF.

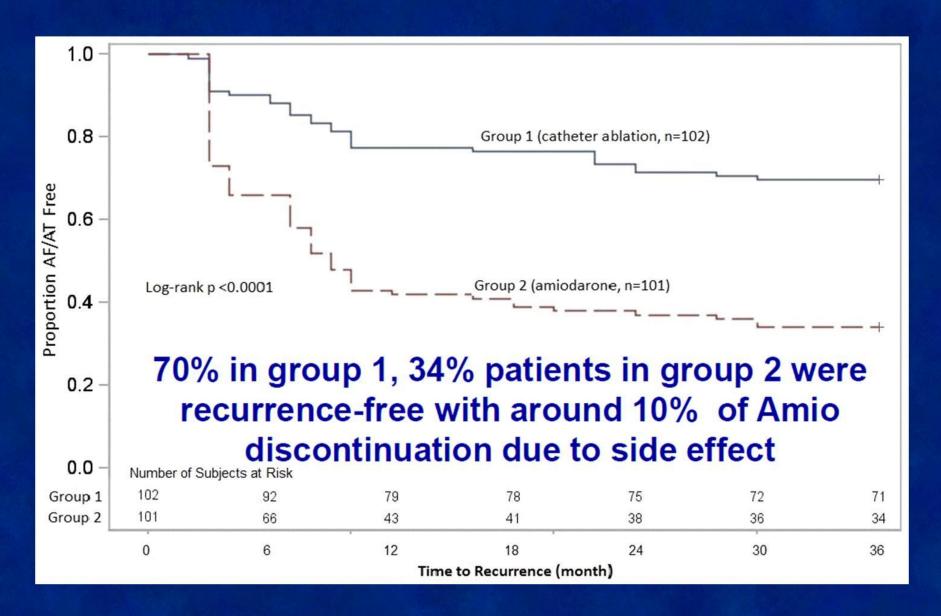
Results: Risk categorization differed widely between the different schemes compared. Patients classified as high risk ranged from 10.2% with the Framingham schema to 75.7% with the Birmingham 2009 schema. The classic CHADS $_2$  (Congestive heart failure, Hypertension, Age > 75, Diabetes, prior Stroke/transient ischemic attack) schema categorized the largest proportion (61.9%) into the intermediate-risk strata, whereas the Birmingham 2009 schema classified 15.1% into this category. The Birmingham 2009 schema classified only 9.2% as low risk, whereas the Framingham scheme categorized 48.3% as low risk. Calculated C-statistics suggested modest predictive value of all schema for TE. The Birmingham 2009 schema fared marginally better (C-statistic, 0.606) than CHADS $_2$ . However, those classified as low risk by the Birmingham 2009 and NICE schema were truly low risk with no TE events recorded, whereas TE events occurred in 1.4% of low-risk CHADS $_2$  subjects. When expressed as a scoring system, the Birmingham 2009 schema (CHA $_2$ DS $_2$ -VASc acronym) showed an increase in TE rate with increasing scores (P value for trend = .003).

Conclusion: Our novel, simple stroke risk stratification schema, based on a risk factor approach, provides some improvement in predictive value for TE over the  $CHADS_2$  schema, with low event rates in low-risk subjects and the classification of only a small proportion of subjects into the intermediate-risk category. This schema could improve our approach to stroke risk stratification in patients with AF.

CHEST 2010; 137(2):263–272


# Risk Categorization, Incidence of TE, and Predictive Ability for Contemporary Risk Stratification Schema Among Euro Heart Survey Pts. Who Did not Receive Anticoagulation at Baseline

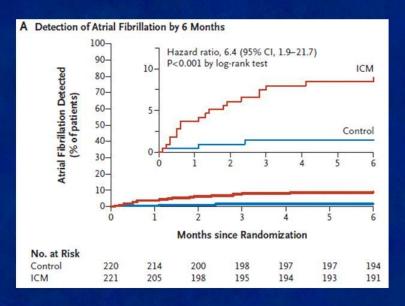
| <u> </u>                    | Categorization of TE Risk |                                          |          | Predictive Ability   |         |  |
|-----------------------------|---------------------------|------------------------------------------|----------|----------------------|---------|--|
|                             | Low                       | Intermediate                             | High     | C Statistic (95% CI) | P Value |  |
| AFI 1994                    |                           |                                          |          |                      | .209    |  |
| % in risk category          | 16.7                      | 12.2                                     | 71.1     | 0.573                |         |  |
| TE events, No. (%)          | 1 (0.6)                   | 4(3.0)                                   | 20 (2.6) | (0.470-0.676)        |         |  |
| SPAF 1999                   |                           |                                          |          |                      | .405    |  |
| % in risk category          | 26.2                      | 44.8                                     | 29.0     | 0.549                |         |  |
| TE events, No. (%)          | 5 (1.8)                   | 11 (2.3)                                 | 9 (2.9)  | (0.435-0.662)        |         |  |
| CHADS <sub>o</sub> —classic |                           |                                          |          |                      | .296    |  |
| % in risk category          | 20.4                      | 61.9                                     | 17.7     | 0.561b               |         |  |
| TE events, No. (%)          | 3(1.4)                    | 16 (2.4)                                 | 6 (3.2)  | (0.450 - 0.672)      |         |  |
| CHADS,—revised              |                           |                                          |          |                      | .140    |  |
| % in risk category          | 20.4                      | 34.9                                     | 44.7     | 0.586b               |         |  |
| TE events, No. (%)          | 3(1.4)                    | 7(1.9)                                   | 15 (3.1) | (0.477-0.695)        |         |  |
| Framingham                  |                           | No. of the second                        |          |                      | .018    |  |
| % in risk category          | 48.3                      | 41.5                                     | 10.2     | 0.638b               |         |  |
| TE events, No. (%)          | 6(1.2)                    | 14 (3.2)                                 | 5 (4.6)  | (0.532 - 0.744)      |         |  |
| NICE 2006                   |                           |                                          |          |                      | .094    |  |
| % in risk category          | 13.1                      | 39.2                                     | 47.7     | 0.598                |         |  |
| TE events, No. (%)          | 0(0.0)                    | 13 (3.1)                                 | 12(2.3)  | (0.498-0.698)        |         |  |
| ACC/AHA/ESC 2006            |                           |                                          |          |                      | .228    |  |
| % in risk category          | 19.6                      | 32.6                                     | 47.8     | 0.571                |         |  |
| TE events, No. (%)          | 3(1.4)                    | 7(2,0)                                   | 15 (2.9) | (0.461-0.680)        |         |  |
| ACCP 2008                   |                           |                                          |          |                      | .204    |  |
| % in risk category          | 19.6                      | 33.4                                     | 47.0     | 0.574                |         |  |
| TE events, No. (%)          | 3 (1.4)                   | 7 (1.9)                                  | 15 (3.0) | (0.465-0.683)        |         |  |
| Birmingham 2009             | - 131.47                  | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | (200)    | 1-1-1-1              | .070    |  |
| % in risk category          | 9.2                       | 15.1                                     | 75.7     | 0.606                |         |  |
| TE events, No. (%)          | 0 (0.0)                   | 1 (0.6)                                  | 24 (3.0) | (0.513-0.699)        |         |  |

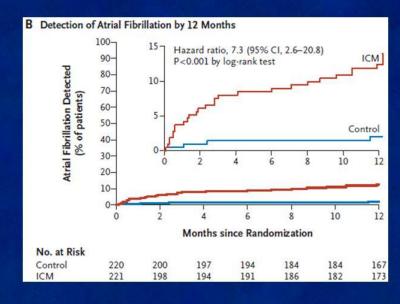

## The 2009 Birmingham Schema Expressed as a Point-Based Scoring System, with the Acronym CHA<sub>2</sub>DS<sub>2</sub>-VASc

| Risk Factor                                                      | Score |  |  |
|------------------------------------------------------------------|-------|--|--|
| Congestive heart failure/LV dysfunction                          | 1     |  |  |
| <u>H</u> ypertension                                             | 1     |  |  |
| $\underline{\mathbf{A}}$ ge $\geq 75$ y                          | 2     |  |  |
| <u>D</u> iabetes mellitus                                        | 1     |  |  |
| Stroke/TIA/TE                                                    | 2     |  |  |
| Vascular disease (prior myocardial infarction, peripheral artery |       |  |  |
| disease, or aortic plaque)                                       |       |  |  |
| <u>Age</u> 65-74 y                                               | 1     |  |  |
| <u>Sex category</u> (ie female gender)                           | 1     |  |  |
| LV = left ventricular; TE = thromboembolism. See Table           | 1 for |  |  |
| expansion of other abbreviations.                                |       |  |  |

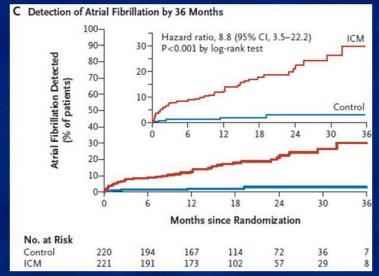
#### Mortality Associated with AF: 1990 - 2010




#### **KM Curves Comparing Success Rate**



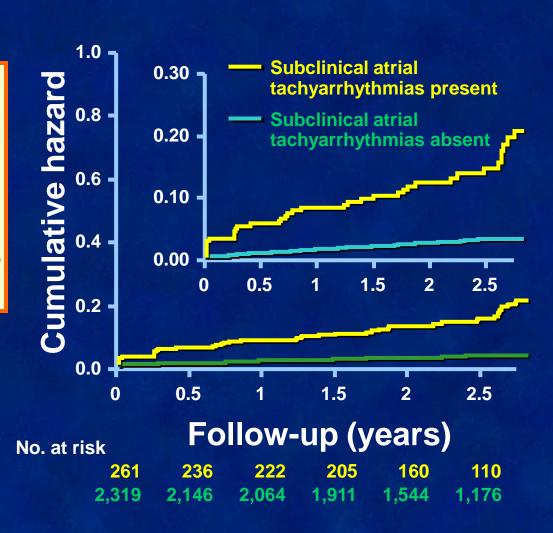

North American Perspective and Specificities


Prevalence of unknown or cryptogenic AF and

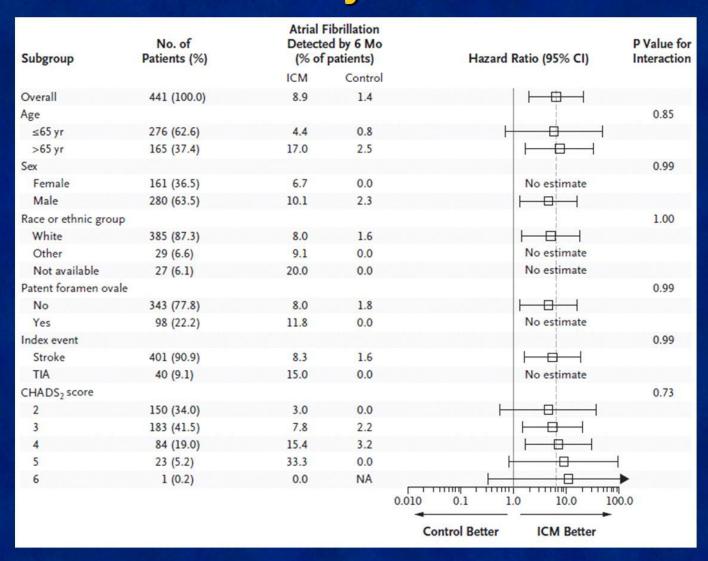
#### **Time to First Detection of AF**






In Crystal AF




## ASSERT: Risk of subclinical and clinical atrial arrhythmia

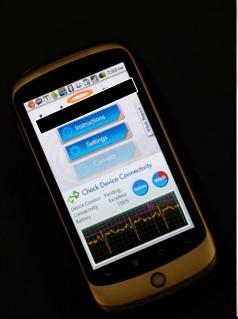
35% of patients had atrial high rate episodes during the study

Risk of clinical atrial arrhythmia during follow up



### Subgroup Analysis of Time to First Detection of AF by 6 Mos.




North American Perspective and Specificities

Role of monitoring in finding AF

### Remote Patient Monitoring

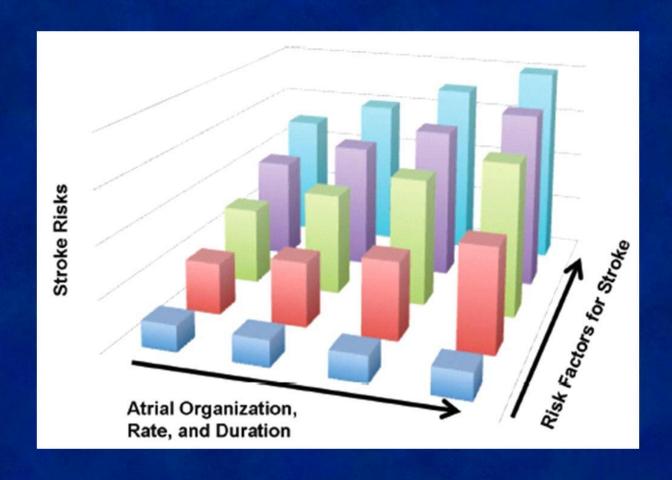
ECG
Respiration
Body position
Physical activity



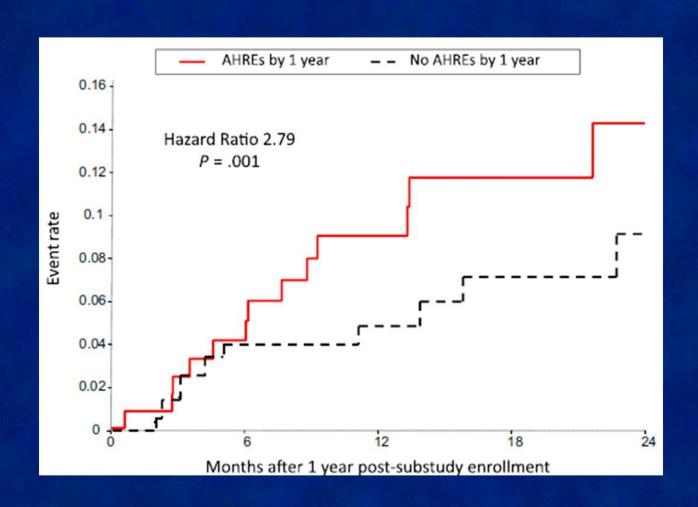




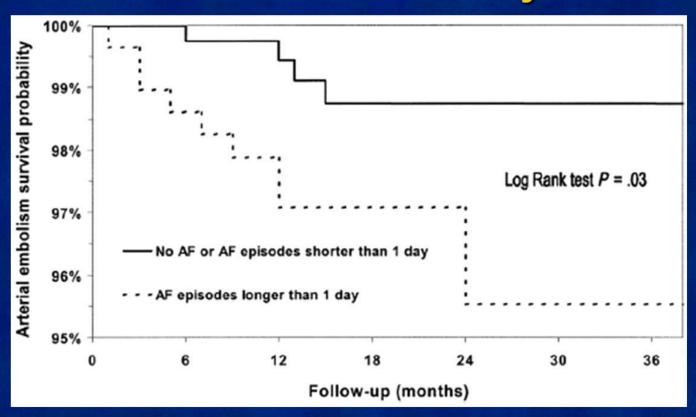



### Studies of Prolonged Ambulatory Cardiac Rhythm Monitoring in Pts. with Stroke/TIA

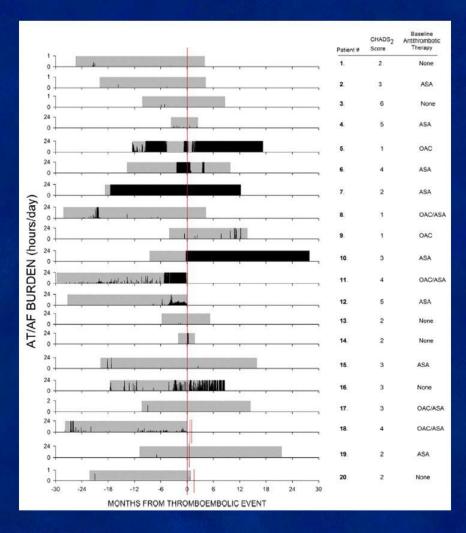
|                                | No. of   |                                 |                                                                | Interval From                         |                                                           |                                         |                              |                                              |
|--------------------------------|----------|---------------------------------|----------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|-----------------------------------------|------------------------------|----------------------------------------------|
| Study                          | Patients | Study Design                    | Patient Selection                                              | CV Event                              | Definition of PAF                                         | Type of Monitor                         | Duration                     | Diagnostic Yield                             |
| Higgins et al <sup>18</sup>    | 100      | Randomized trial                | Any TIA or stroke without known AF                             | ≤7 d                                  | 20 s for sustained<br><20 s but 6 VC for<br>nonsustained* | 50 SP<br>50 aELR                        | 7 d                          | 4% SP<br>44% ELRa for PAF<br>of any duration |
| Rabinstein et al <sup>19</sup> | 132      | Case control                    | 66 CS<br>66 SKC                                                | ≤90 d (28±20 d)                       | Any duration*                                             | MCOT (all)                              | 21 d                         | 25% in CS<br>14% in SKC                      |
| Ritter et al <sup>20</sup>     | 60       | Prospective cohort, comparative | CS                                                             | 13 d (IQR, 10-65)                     | 30 s (2 min required for ILR detection)*                  | ILR plus initial<br>7-d Holter          | ILR 382 d (IQR,<br>89-670)   | 17% ILR<br>1.7% 7-d Holter                   |
| Etgen et al21                  | 22       | Prospective cohort              | CS                                                             | Mostly within 10 d                    | 6 min                                                     | ILR                                     | 365 d                        | 27%                                          |
| Cotter et al <sup>22</sup>     | 51       | Prospective, cohort             | CS                                                             | 174±134 d                             | 2 min*                                                    | ILR                                     | Until detection (≤229±116 d) | 25.5%                                        |
| Kamel et al <sup>17</sup>      | 40       | Randomized trial                | CS or CTIA                                                     | ≤60 d (22±12 d)                       | 30 s*                                                     | 20 MCOT 20 routine follow-up            | 21 d                         | 0%<br>(36% had MCOT<br>noncompliance)        |
| Miller et al <sup>23</sup>     | 156      | Retrospective cohort            | Mostly CS or CTIA (24% were not cryptogenic)                   | ≤180 d (33±36 d)                      | Any duration                                              | MCOT                                    | ≤30 d                        | 17.3%                                        |
| Flint et al24                  | 239      | Prospective cohort              | CS                                                             | 29 d (17-50 d)                        | 5 s*                                                      | aELR                                    | ≤30 d (24.5±9 d)             | 12.1%                                        |
| Manina et al <sup>25</sup>     | 114      | Prospective cohort              | CS or CTIA                                                     | Up to 30 d                            | Any duration*                                             | Holter                                  | 4 d                          | 24.3%                                        |
| Doliwa et al <sup>26</sup>     | 249      | Prospective cohort              | Any TIA or stroke without known AF                             | ≤1 4 d                                | 10 s*                                                     | Serial ECG, patient activated           | 30 d                         | 6%                                           |
| Bhatt et al <sup>27</sup>      | 62       | Retrospective cohort            | CS or CTIA                                                     | 29 d (16-48) after hospital discharge | 30 s*                                                     | MCOT                                    | ≤28 d                        | 24%                                          |
| Stahrenberg et al28            | 224      | Prospective cohort              | Any TIA or stroke without known AF                             | 9.5 h (IQR, 6-16 h)                   | Any duration*                                             | Holter                                  | 7 d                          | 12.5%                                        |
| Gaillard et al <sup>29</sup>   | 98       | Retrospective cohort            | Mostly CS or CTIA (16% were not cryptogenic)                   | ≤180 d                                | 32 s*                                                     | TTM with serial ECG (patient activated) | ≤30–90 d                     | 9.2%                                         |
| Dion et al <sup>30</sup>       | 24       | Prospective cohort              | CS, age <75 (mean age, 49±14 y)                                | Up 120 d                              | Any duration*                                             | ILR                                     | 14.5 mo                      | 4.2%                                         |
| Elijovich et al31              | 20       | Retrospective cohort            | CS or CTIA                                                     | NA                                    | 30 s*                                                     | aELR                                    | ≤30 d                        | 20%                                          |
| Tayal et al32                  | 56       | Retrospective cohort            | CS or CTIA                                                     | ≤90 d                                 | Any duration                                              | MCOT                                    | ≤21 d                        | 23%                                          |
| Jabaudon et al <sup>33</sup>   | 88       | Prospective cohort              | Any TIA or stroke (patients with remote PAF were not excluded) | Mean 55 d                             | NA                                                        | aELR                                    | 7 d                          | 5.7%                                         |
| Barthélémy et al³⁴             | 60       | Prospective cohort              | Any TIA or stroke (including 28 with CS or CTIA)               | 10±2 d                                | 30 s                                                      | aELR                                    | 4 d (70±31 h)                | 20% whole cohort<br>14.3% CS/CTIA            |
| Schuchert et al35              | 82       | Retrospective cohort            | CS                                                             | ≤14–21 d                              | 1 min                                                     | Holter                                  | 3 d                          | 4.9%                                         |


### AF Detected by Insertable Cardiac Monitors in Pts. with Cryptogenic Stroke

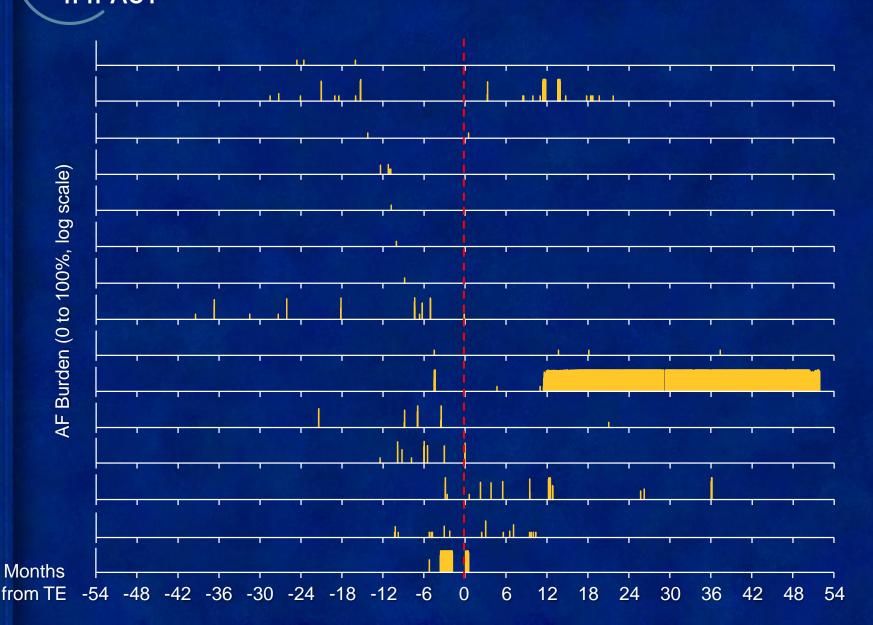
| Study (year)                                | No. of patients | AF definition            | Monitoring duration | AF detection yield                                           | Notes                                                                                                                                                                      |
|---------------------------------------------|-----------------|--------------------------|---------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cotter et al <sup>25</sup> (2013)           | 51              | 2 minutes                | Mean 229 (116) days | 25.5%                                                        | Median time from ICM implant<br>to first new AF episode: 48<br>days (range 0–154 days)<br>Median duration of first new AF<br>episode: 6 minutes (range<br>1– 4320 minutes) |
| Ritter et al <sup>26</sup> (2013)           | 60              | 2 minutes                | 1 year              | 16.7%                                                        | Mean time from ICM implant to<br>first new AF episode: 64 days<br>(1-556). 7-day Holter<br>detected AF in only 1.7%                                                        |
| Etgen et al <sup>27</sup> (2013)            | 22              | 6 minutes                | 1 year              | 27.3%                                                        | Mean time from stroke to first<br>new AF episode: 5 months                                                                                                                 |
| Rojo-Martinez et al <sup>28</sup><br>(2013) | 101             | 2 minutes                | 281 ± 212 days      | 33.7%                                                        | nen zu episode. 5 mondis                                                                                                                                                   |
| SURPRISE <sup>29</sup> (2014)               | 85              | 2 minutes                | 569 ± 310 days      | 16.1 %                                                       | Mean time from stroke to first<br>new AF episode 109 ± 48<br>days                                                                                                          |
| CRYSTAL AF <sup>11</sup> (2014)             | 221             | >30 seconds <sup>*</sup> | Minimum 6 months    | 8.9% at 6 months<br>12.4% at 12 months<br>30.0% at 36 months |                                                                                                                                                                            |


### Hypothsized Interplay Between Atrial Arrhythmia Type and Stroke Risks



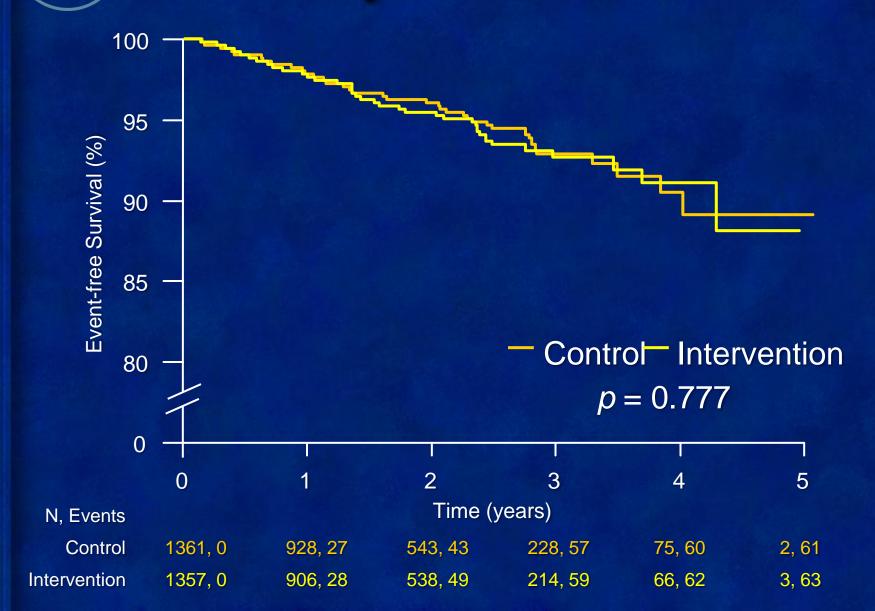

## MOST Ancillary Study: KM Plot of Death or Nonfatal Stroke after 1 Yr. of F/up in Pts. with AHREs vs. Those without AHREs




# Italian AT500 Registry: KM Cumulative Survival from Embolic Events for Pts with AF Episodes Longer than 1 Day and of Pts. without AF Recurrences or with AF Episodes Shorter than 1 day



## TRENDS Trial: Summary of AT/AF Burden Per Day Relative to Onset of Cerebrovascular Events/Systemic Emboli




### Temporal Dissociation between Atrial Fibrillation & Thromboembolism



IMPACT

#### **Primary Outcome Events**



### My question What does this all mean??



#### Cryptogenic stroke—can we abandon this apologetic diagnosis?

A. John Camm

Cryptogenic stroke is an apology for ignorance about the cause of ischaemic stroke. Now, in two new studies involving long-term electrocardiogram monitoring, investigators from the EMBRACE and CRYSTAL-AF trials suggest that many instances of cryptogenic stroke might be caused by undetected atrial fibrillation.

Camm, A. J. Nat. Rev. Cardiol. 11, 504–505 (2014); published online 29 July 2014; doi:10.1038/nrcardio.2014.111

Sudden occlusion of an artery supplying the brain can lead to embolic stroke or transient ischaemic attack (TIA). However, many embolic strokes remain unexplained and are described as 'cryptogenic', one of many words (such as essential, primary, lone, and idiopathic) that we use to disguise our ignorance of the underlying cause. In two new studies, in which the potential causes of cryptogenic stroke were investigated, the researchers of the EMBRACE1 and CRYSTAL-AF2 trials unequivocally demonstrate that prolonged electrocardiogram (ECG) monitoring reveals more atrial fibrillation than standard 12-lead ECG or 24-h or 48-h Holter ECG protocol, and conclude that these arrhythmias were a likely cause of embolic stroke or TIA.

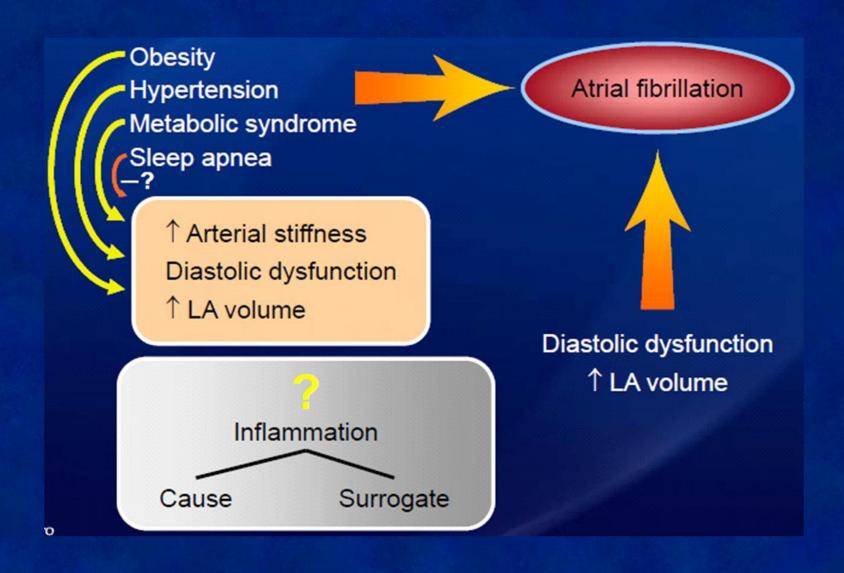
Ischaemic events might result from a number of different mechanisms, such as a dislodged thrombus, or rarely a tumour, from the atrium or ventricle, or a detachment of atheromatous debris from the aorta or arterial vessels that lead to the brain. Similarly, embolism of a venous thrombus or air through an atrial septal defect or patent foramen ovale into the arterial circulation can also lead to an ischaemic event. However, the most-commonly diagnosed cause of ischaemic stroke is atrial fibrillation, which can lead to the formation of a blood clot and its subsequent embolization, commonly in the left atrial appendage. Many investigators have suspected that atrial fibrillation, which is often undetected and an intermittent arrhythmia, might cause many unexplained ischaemic strokes.34 In some studies, repeated 12-lead ECGs and additional ambulatory ECG monitoring for ≥24h can reveal atrial fibrillation in a substantial proportion of patients within hours or days of the embolic event.<sup>5</sup> Physicians have, therefore, been easily satisfied that this atrial fibrillation was relevant to the pathophysiology of stroke, and consequently initiated anticoagulant rather than antiplatelet therapy to prevent a recurrence.

However, about one-quarter of embolic strokes remain unexplained, and other studies have shown that atrial fibrillation can be highly transient, ephemeral, and silent.<sup>6,7</sup> Physicians have struggled with the diagnostic inadequacy of momentary ECG recordings. Continuous and sustained ECG readings might, therefore, be needed to uncover the arrhythmia. When new and robust ECG-monitoring techniques became available, trials were initiated with these new technologies to explore the possibility that the left atrium was the source of a greater proportion of embolic strokes that previously recognised.

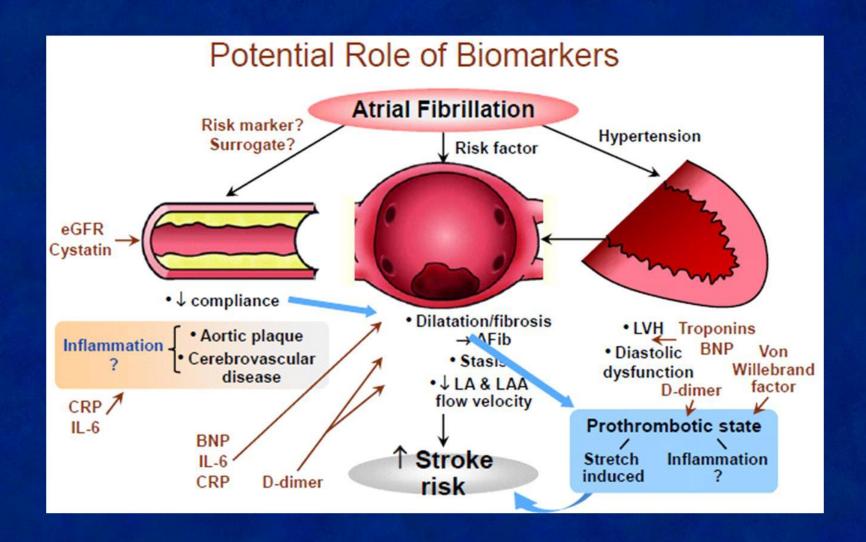
The investigators in both the EMBRACE and CRYSTAL-AF studies used the standard definition of atrial fibrillation, which was developed specifically to reveal whether the arrhythmia can occur after an ablation

procedure. However, whether a 30s episode of atrial fibrillation has any mechanistic influence on thrombus formation is unclear.8 Gladstone and colleagues (EMBRACE)1 used continuous surface ECG monitoring for 30 days, whereas Sanna et al. (CRYSTAL-AF)2 implanted miniature ECG monitors beneath the skin and monitored heart rhythm for up to 3 years after the initial stroke. The monitoring periods in both trials took place on average well after the stroke had occurred (Table 1). Can one realistically infer from an episode of atrial fibrillation occurring at some interval after the embolic event that this arrhythmia explained its occurrence? My opinion is that one should be reasonably sceptical. Nonetheless, many of the recorded episodes were not remote from the index event and might, therefore, provide at least a clue about events that precipitated the stroke. In the EMBRACE trial,1 Gladstone and colleagues report that only half of the cases of atrial fibrillation were detected in the first week after the stroke. and the remainder occurred over the next 3 weeks. Whereas in the CRYSTAL-AF study,2 which was conducted over 3 years, cases arose throughout the recording period. Moreover, neither trial included a control group of patients who had not sustained an ischaemic stroke or TIA against which to judge the relevance of the recorded arrhythmia. The studies were not configured to investigate the prognostic importance of the atrial fibrillation in terms of subsequent stroke or TIA recurrence because physicians were free to act on the ECG diagnosis, and their interventions would have compromised any possible conclusion.

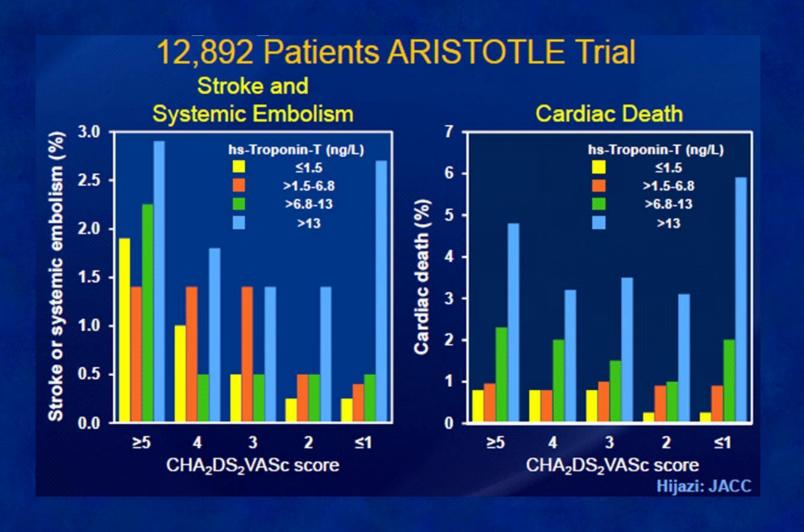
No-one would disagree with the conclusions made by both teams of investigators that atrial fibrillation was the underlying cause of the observed cryptogenic stoke


| Study                | Investigation group  | n          | Onset of monitoring<br>after stroke (days) | Duration of<br>monitoring (days) | Proportion<br>with AF (%) |  |
|----------------------|----------------------|------------|--------------------------------------------|----------------------------------|---------------------------|--|
| EMBRACE <sup>1</sup> | Usual*<br>Intensive‡ | 285<br>286 | 75.1±38.6                                  | 90                               | 3.2<br>16.1               |  |
| CRYSTAL-AF2          | Usual*<br>Intensive§ | 220<br>221 | 38.1±27.6                                  | ~180                             | 1.4<br>8.9                |  |

<sup>\*12-</sup>lead ECG and Holter ECG monitoring for 24–48h. \*Continuous surface ECG for 4 weeks. \*Subcutaneous ECG monitoring with an implanted device for up to 3 years. Abbreviations: AF, strial fibrillation; ECG, electrocardiogram.


North American Perspective and Specificities

Risk that AF isn't a risk


### Afib as a Vascular Disease – Suggestive Evidence



#### AF and the Risk of Stroke

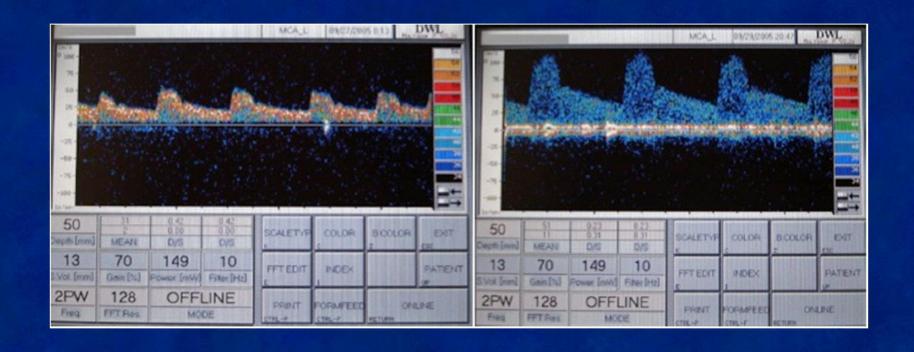


### Outcomes in Patients with AF Stratified by CHA<sub>2</sub>DS<sub>2</sub>-VASc Score and hs-TnT




#### Just When I Knew All of Life's Answers, They Changed All the Questions



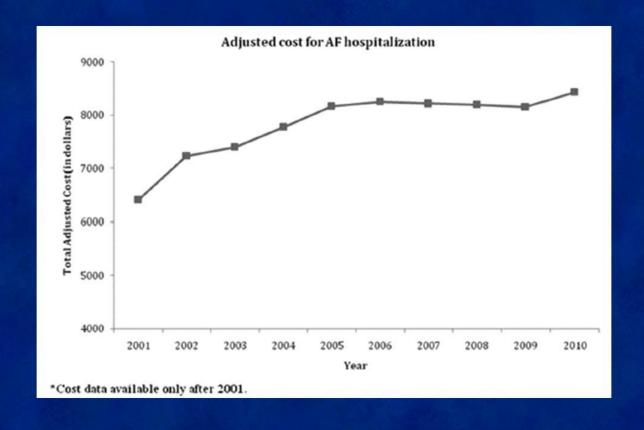

North American Perspective and Specificities

# Demnetia and CNS Misadventures

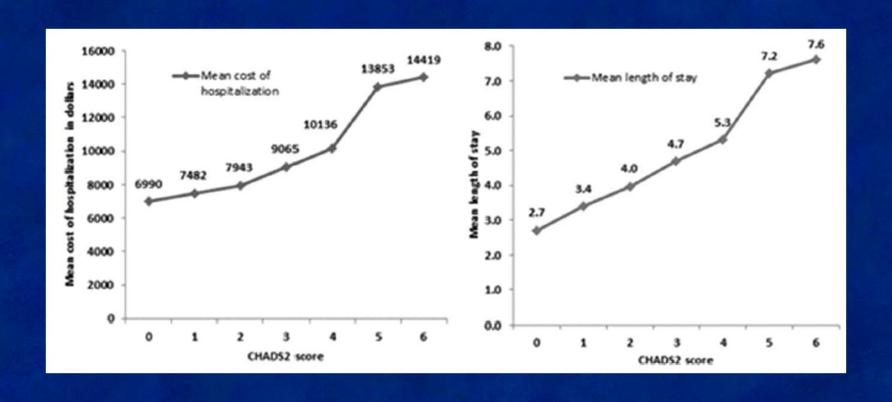
#### **Mechanisms of Pathology of Dementia in AF**



## Waveforms Depicting Blood Flow in Left MCA in Pt. in AF (L), Waveform in the Same Pt. After Cardioversion (R)




North American Perspective and Specificities


Hospitalization

And Cost

#### Trend in Cost of Care for AF Hospitalizations



### Mean Length of Stay and Cost of AF Hospitalization According to CHAD<sub>s</sub> Score

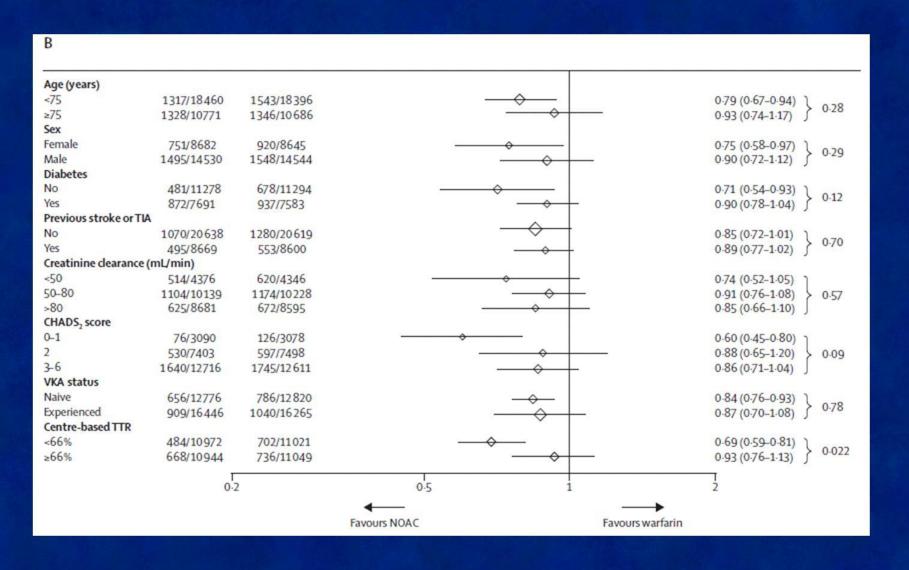




### What Is The Art That We Are Stating?






North American Perspective and Specificities

NOACs

### Baseline Characteristics of Intention-to-Treat Population

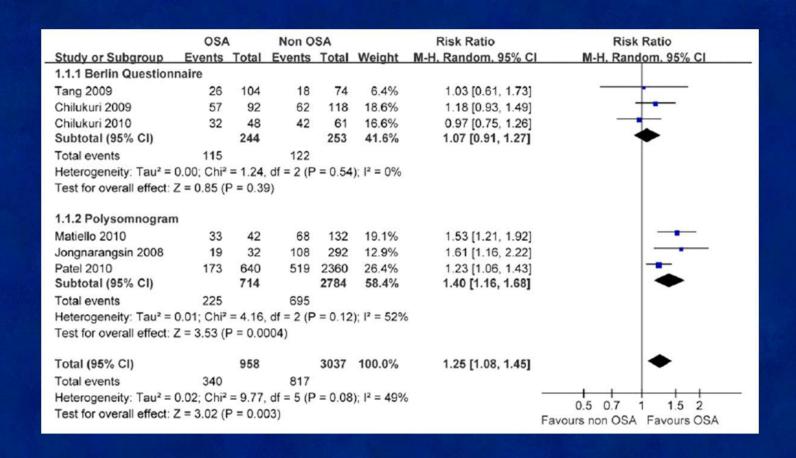
|                             | RE-LY <sup>5</sup>               |                                  | ROCKET-AF <sup>6</sup> A |                         | ARISTOTLE <sup>7</sup> |                      | ENGAGE AF-TIMI 488   |                               |                               | Combined             |                    |                        |
|-----------------------------|----------------------------------|----------------------------------|--------------------------|-------------------------|------------------------|----------------------|----------------------|-------------------------------|-------------------------------|----------------------|--------------------|------------------------|
|                             | Dabigatran<br>150 mg<br>(n=6076) | Dabigatran<br>110 mg<br>(n=6015) | Warfarin<br>(n=6022)     | Rivaroxaban<br>(n=7131) | Warfarin<br>(n=7133)   | Apixaban<br>(n=9120) | Warfarin<br>(n=9081) | Edoxaban<br>60 mg<br>(n=7035) | Edoxaban<br>30 mg<br>(n=7034) | Warfarin<br>(n=7036) | NOAC<br>(n=42 411) | Warfarin<br>(n=29 272) |
| Age (years)                 | 71.5 (8.8)                       | 71-4 (8-6)                       | 71-6 (8-6)               | 73 (65-78)              | 73 (65-78)             | 70 (63-76)           | 70 (63-76)           | 72 (64-68)                    | 72 (64-78)                    | 72 (64-78)           | 71-6               | 71.5                   |
| ≥75 years                   | 40%                              | 38%                              | 39%                      | 43%                     | 43%                    | 31%                  | 31%                  | 41%                           | 40%                           | 40%                  | 38%                | 38%                    |
| Women                       | 37%                              | 36%                              | 37%                      | 40%                     | 40%                    | 36%                  | 35%                  | 39%                           | 39%                           | 38%                  | 38%                | 37%                    |
| Atrial fibrillation type    |                                  |                                  |                          |                         |                        |                      |                      |                               |                               |                      |                    |                        |
| Persistent or permanent     | 67%                              | 68%                              | 66%                      | 81%                     | 81%                    | 85%                  | 84%                  | 75%                           | 74%                           | 75%                  | 76%                | 77%                    |
| Paroxysmal                  | 33%                              | 32%                              | 34%                      | 18%                     | 18%                    | 15%                  | 16%                  | 25%                           | 26%                           | 25%                  | 24%                | 22%                    |
| CHADS2*                     | 2.2 (1.2)                        | 2.1 (1.1)                        | 2.1 (1.1)                | 3.5 (0.94)              | 3.5 (0.95)             | 2.1 (1.1)            | 2.1 (1.1)            | 2.8 (0.97)                    | 2.8 (0.97)                    | 2.8 (0.98)           | 2.6 (1.0)          | 2.6 (1.0)              |
| 0-1                         | 32%                              | 33%                              | 31%                      | 0                       | 0                      | 34%                  | 34%                  | <1%                           | <1%                           | <1%                  | 17%                | 17%                    |
| 2                           | 35%                              | 35%                              | 37%                      | 13%                     | 13%                    | 36%                  | 36%                  | 46%                           | 47%                           | 47%                  | 35%                | 33%                    |
| 3-6                         | 33%                              | 33%                              | 32%                      | 87%                     | 87%                    | 30%                  | 30%                  | 54%                           | 53%                           | 53%                  | 48%                | 50%                    |
| Previous stroke or TIA*     | 20%                              | 20%                              | 20%                      | 55%                     | 55%                    | 19%                  | 18%                  | 28%                           | 29%                           | 28%                  | 29%                | 30%                    |
| Heart failure†              | 32%                              | 32%                              | 32%                      | 63%                     | 62%                    | 36%                  | 35%                  | 58%                           | 57%                           | 58%                  | 46%                | 47%                    |
| Diabetes                    | 23%                              | 23%                              | 23%                      | 40%                     | 40%                    | 25%                  | 25%                  | 36%                           | 36%                           | 36%                  | 31%                | 31%                    |
| Hypertension                | 79%                              | 79%                              | 79%                      | 90%                     | 91%                    | 87%                  | 88%                  | 94%                           | 94%                           | 94%                  | 88%                | 88%                    |
| Prior myocardial infarction | 17%                              | 17%                              | 16%                      | 17%                     | 18%                    | 15%                  | 14%                  | 11%                           | 12%                           | 12%                  | 15%                | 15%                    |
| Creatinine clearance‡       |                                  |                                  |                          |                         |                        |                      |                      |                               |                               |                      |                    |                        |
| <50 mL/min                  | 19%                              | 19%                              | 19%                      | 21%                     | 21%                    | 17%                  | 17%                  | 20%                           | 19%                           | 19%                  | 19%                | 19%                    |
| 50-80 mL/min                | 48%                              | 49%                              | 49%                      | 47%                     | 48%                    | 42%                  | 42%                  | 43%                           | 44%                           | 44%                  | 45%                | 45%                    |
| >80 mL/min                  | 32%                              | 32%                              | 32%                      | 32%                     | 31%                    | 41%                  | 41%                  | 38%                           | 38%                           | 37%                  | 36%                | 36%                    |
| Previous VKA use§           | 50%                              | 50%                              | 49%                      | 62%                     | 63%                    | 57%                  | 57%                  | 59%                           | 59%                           | 59%                  | 57%                | 57%                    |
| Aspirin at baseline         | 39%                              | 40%                              | 41%                      | 36%                     | 37%                    | 31%                  | 31%                  | 29%                           | 29%                           | 30%                  | 34%                | 34%                    |
| Median follow-up (years)¶   | 2-0                              | 2-0                              | 2.0                      | 1.9                     | 1.9                    | 1.8                  | 1.8                  | 2.8                           | 2.8                           | 2.8                  | 2.2                | 2.2                    |
| Individual median TTR       | NA                               | NA                               | 67 (54-78)               | NA                      | 58 (43-71)             | NA                   | 66 (52-77)           | NA                            | NA                            | 68 (57-77)           | NA                 | 65 (51-76)             |

#### **Major Bleeding subgroups**



North American Perspective and Specificities

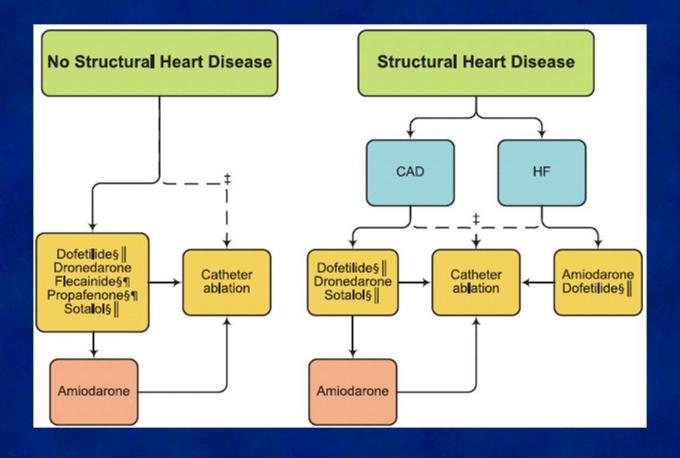
LAAO


# EHRA New Slides AF Risk

## Drug and Ablative Therapies

#### Summary of Recommendations for Risk-Based Antithrombotic Therapy

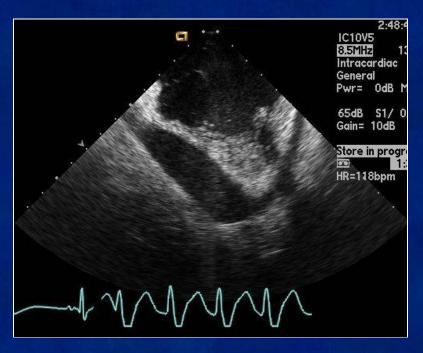
| Recommendations                                                                                                                                                                                                                        | COR             | LOE | References   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|--------------|
| Antithrombotic therapy based on shared decision making, discussion of risks of stroke and bleeding,<br>and patient's preferences                                                                                                       | - 1             | С   | N/A          |
| Selection of antithrombotic therapy based on risk of thromboembolism                                                                                                                                                                   | 1               | В   | 64-67        |
| CHA <sub>2</sub> DS <sub>2</sub> -VASc score recommended to assess stroke risk                                                                                                                                                         | 1               | В   | 68-70        |
| Warfarin recommended for mechanical heart valves and target INR intensity based on type and location of prosthesis                                                                                                                     | 1               | В   | 71–73        |
| With prior stroke, TIA, or $CHA_2DS_2$ -VASc score $\geq 2$ , oral anticoagulants recommended. Options include:                                                                                                                        |                 |     |              |
| Warfarin                                                                                                                                                                                                                               | 1               | A   | 68-70        |
| Dabigatran, rivaroxaban, or apixaban                                                                                                                                                                                                   | 1               | В   | 74-76        |
| With warfarin, determine INR at least weekly during initiation of therapy and monthly when stable                                                                                                                                      | 1               | А   | 77-79        |
| Direct thrombin or factor Xa inhibitor recommended if unable to maintain therapeutic INR                                                                                                                                               | 1               | C   | N/A          |
| Reevaluate the need for anticoagulation at periodic intervals                                                                                                                                                                          | 1               | С   | N/A          |
| Bridging therapy with UFH or LMWH recommended with a mechanical heart valve if warfarin is interrupted.  Bridging therapy should balance risks of stroke and bleeding                                                                  | 1               | С   | N/A          |
| For patients without mechanical heart valves, bridging therapy decisions should balance stroke and bleeding risks against duration of time patient will not be anticoagulated                                                          | 1               | С   | N/A          |
| Evaluate renal function before initiation of direct thrombin or factor Xa inhibitors, and reevaluate when clinically indicated and at least annually                                                                                   | 1               | В   | 80-82        |
| For atrial flutter, antithrombotic therapy is recommended as for AF                                                                                                                                                                    | 1               | C   | N/A          |
| With nonvalvular AF and CHA <sub>2</sub> DS <sub>2</sub> -VASc score of 0, it is reasonable to omit antithrombotic therapy                                                                                                             | lla             | В   | 80,81        |
| With $CHA_2DS_2$ -VASc score $\geq$ 2 and end-stage CKD (CrCl <15 mL/min) or on hemodialysis, it is reasonable to prescribe warfarin for oral anticoagulation                                                                          | lla             | В   | 82           |
| With nonvalvular AF and a CHA <sub>2</sub> DS <sub>2</sub> -VASc score of 1, no antithrombotic therapy or treatment with oral anticoagulant or aspirin may be considered                                                               | IIb             | С   | N/A          |
| With moderate-to-severe CKD and CHA₂DS₂-VASc scores ≥2, reduced doses of direct thrombin or factor Xa inhibitors may be considered                                                                                                     | llb             | С   | N/A          |
| For PCI,* BMS may be considered to minimize duration of DAPT                                                                                                                                                                           | IIb             | C   | N/A          |
| After coronary revascularization in patients with CHA <sub>2</sub> DS <sub>2</sub> -VASc score ≥2, it may be reasonable to use clopidogrel concurrently with oral anticoagulants but without aspirin                                   | IIb             | В   | 83           |
| Direct thrombin dabigatran and factor Xa inhibitor rivaroxaban are not recommended in patients with AF and end-stage CKD or on dialysis because of a lack of evidence from clinical trials regarding the balance of risks and benefits | III: No Benefit | С   | 74–76, 84–86 |
| Direct thrombin inhibitor dabigatran should not be used with a mechanical heart valve                                                                                                                                                  | III: Harm       | В   | 87           |


### Comparison of AF Recurrence after Catheter Ablation in Pts. with OSA and non-OSA Controls in Forest Plot



North American Perspective and Specificities

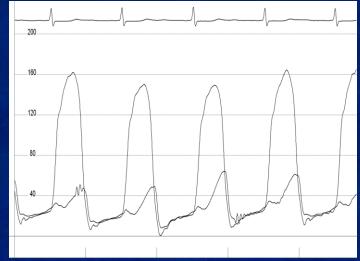
Ablation


### Strategies for Rhythm Control in Pts with Paroxysmal and Persistent AF

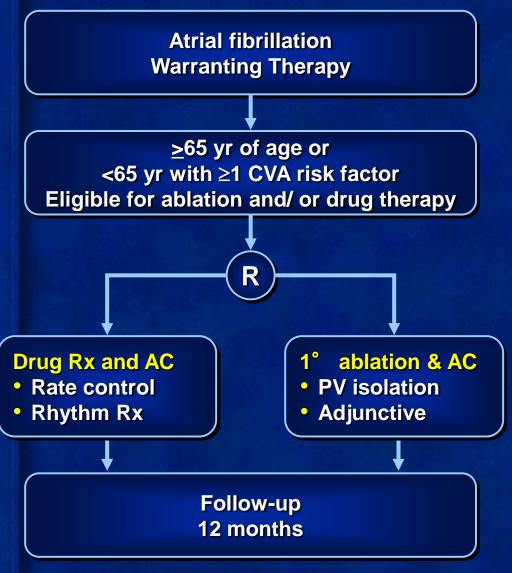



### Risks of AF Ablation: The Second International AF Ablation Registry

| Type of Complication                            | No of Pts | Rate,%      |
|-------------------------------------------------|-----------|-------------|
| Death                                           | 25        | 0.15        |
| Tamponade                                       | 213       | 1.31        |
| Pneumo/ Hemo thorax                             | 19        | 0.11        |
| Sepsis, abscesses or endocarditis               | 2         | 0.01        |
| Permanent diaphragmatic paralysis               | 28        | 0.17        |
| Femoral pseudoaneurysm / A-V Fisula             | 152/88    | .93/0.54    |
| Valve damage/requiring surgery                  | 11/7      | 0.07        |
| Atrium-esophageal fistulae                      | 3         | 0.02        |
| Stroke / TIA                                    | 37 /115   | 0.23 / 0.71 |
| Pulmonary veins stenoses requiring intervention | 48        | 0.29        |
| TOTAL                                           | 741       | 4.54        |


### **Causes for Dyspnea After Ablation**








LV LA



#### **Design of the CABANA Study**



#### **Inclusion Criteria**

- ≥2 paroxysmal AF episodes (≥1 hour) over 4 mos or ≥1 persistent AF episode (>1 week)
- ≥65 yr of age, or <65 yr with ≥1 risk factors

**Hypertension** 

**Diabetes** 

**Heart failure** 

**Prior CVA or TIA** 

LA size >5.0 cm (Vol In  $\geq$ 40 cc/m<sup>2</sup>)

**EF** ≤35 %

 Eligible for ablation and ≥2 rhythm control and/or ≥3 rate corrol drugs

**CABANA Pilot Study; ACC 2010**