CUPID 2: A Phase 2b Trial Investigating the Efficacy and Safety of the Intracoronary Administration of AAV1/SERCA2a in Patients with Advanced Heart Failure

917 – Hot Line V – Heart Failure Tuesday, 1 September 2015, 11:00-12:30, London, Main Auditorium Presentation No. 7165

Barry Greenberg, MD

Distinguished Professor of Medicine

Director, Advanced Heart Failure Treatment Program

University of California, San Diego

On Behalf of the CUPID 2 Trial Investigators & Executive Steering Committee

ClinicalTrials.gov Identifier: NCT01643330

DECLARATION OF INTEREST

- Consulting/Royalties/Owner/ Stockholder of a healthcare company

Disclosures

The clinical study was funded by Celladon Corporation

Dr. Greenberg received financial support from Celladon Corporation

CUPID 2 Committees

Executive Steering Committee

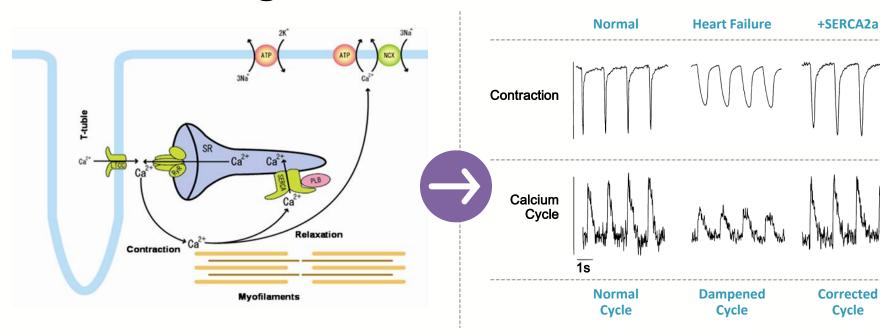
- Barry Greenberg, Chair
- Javed Butler
- G. Michael Felker
- Piotr Ponikowski
- Adriaan Voors

Data Monitoring Committee

- Jeff Borer, Chair
- Lloyd Fisher
- Alan Miller
- Ian Sarembock
- Karl Swedberg

Clinical Endpoints Committee

Akshay Desai, Chair


National Coordinating Investigators

- Jozef Bartunek, Belgium
- Jens Kastrup, Denmark
- Veselin Mitrovic, Germany
- Péter Andréka, Hungary
- Adriaan Voors, The Netherlands
- · Piotr Ponikowski, Poland
- Thomas Kahan, Sweden
- Alexander Lyon, UK

BACKGROUND

SERCA2a Deficiency is Central to the Progression of Heart Failure

SERCA2a: A Critical Enzyme

Responsible for Driving the Pumping Action of the Heart and Becomes Deficient in Patients with Heart Failure

Restoration in End-Stage
Human Heart Cells
Can Restore Normal Contractility,
Relaxation and Calcium Cycling

*J Am Coll Cardiol. 2008;51:1112-1119; J Mol Cell Cardiol. 2007;42:852-861; Byrne M, et.al. Gene Ther. (24 Jul 2008); Surg Clin N Am 84 (2004) 141–159

Rationale for CUPID 2

- Gene transfer with AAV1/SERC2a has been shown to improve cardiac performance and outcomes in a variety of experimental models
- A Phase 1/Phase 2a study in heart failure patients (CUPID 1) suggested that AAV1/SERCA2a stabilized or improved several independent measures of patient wellbeing and cardiac function and that it was associated with a reduction in the recurrent heart failure event rate compared to a placebo-treated control population
- CUPID 2 study was designed to confirm the beneficial effects of the percutaneous intra-coronary administration of AAV1/SERCA2a on clinical outcomes in patients with moderate to severe heart failure symptoms and reduced ejection fraction and to assess the safety of this approach

METHODS – CUPID 2

Main Inclusion and Exclusion Criteria

Inclusion

- 18-80 years of age
- Diagnosis of NYHA Class II-IV chronic HF due to ischemic or non-ischemic cardiomyopathy
- LVEF ≥ 0.35
- Optimal tolerated stable medical therapy for ≥30 days
- Elevated natriuretic peptide or history of HF-related hospitalization within 6 months of enrollment
- <1:2 or equivocal anti-AAV1 neutralizing antibody

Exclusion

- Hypertrophic, restrictive and obstructive cardiomyopathy; acute myocarditis; amyloidosis; discrete LV aneurysm
- Cardiac surgery, PCI, valvuloplasty or IV therapy for HF within 30 days prior to screening
- Surgically implanted LVAD
- Significant liver or renal impairment (>3x ULN; GFR ≤20 mL/min/1.73 m²)
- History of cancer within the past 5 years
- Active infection

Greenberg B, Yaroshinsky A, Zsebo KM, et al. J Am Coll Cardiol HF 2014;2:84.92

AAV1/SERCA2a Administered Via Percutaneous Intracoronary Artery Perfusion

- One time antegrade epicardial coronary artery infusion over 10 minutes
- Infusion pump & commercially available guide or diagnostic catheters
- 60 mL divided into 1, 2 or 3 infusions depending on anatomy
- Nitroglycerin just prior to infusion (5 μ g/min titrated up to MTD)
- Aim was to provide diffuse homogenous left ventricular exposure to AAV1/SERCA2a

Endpoints

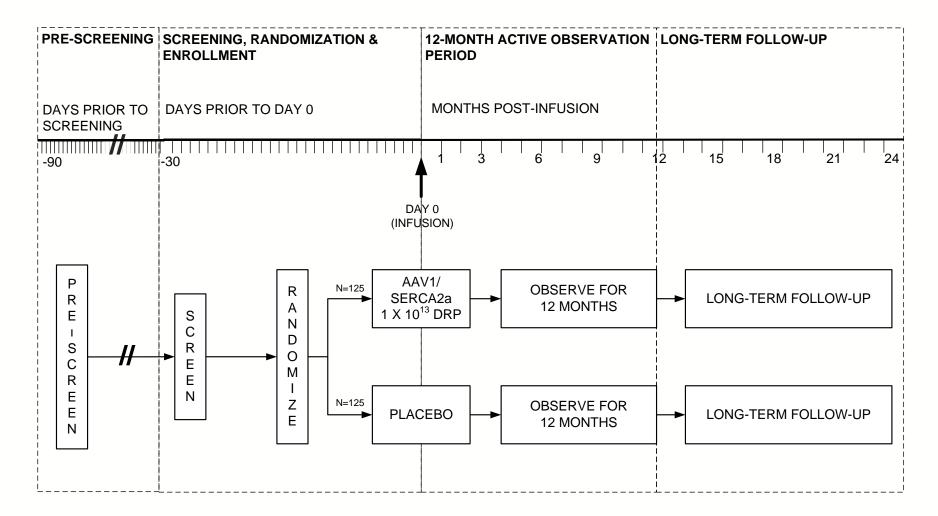
Primary Efficacy Endpoint: Time to recurrent HF-related hospitalizations and ambulatory WHF in presence of terminal events (all-cause death, transplant, dMCS)

Secondary Efficacy Endpoint: Time to first terminal event (all-cause death, transplant, dMCS)

Exploratory Endpoints: NYHA class, NT-proBNP, 6MWT & KCCQ QOL

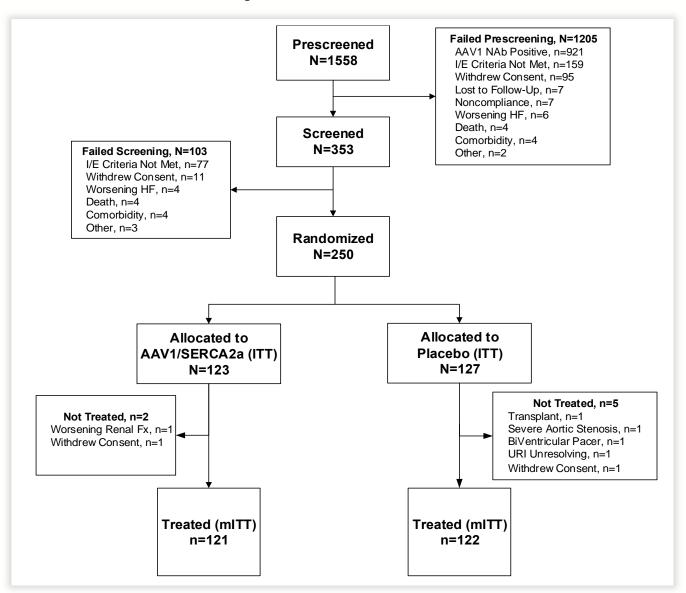

Safety Endpoints: Disposition, clinical events; AEs including procedure-related AEs; changes in medications, vital signs & weight, physical exam, 12-lead ECG, ICD & lab parameters; time to CV-related death

Greenberg B, Yaroshinsky A, Zsebo KM, et al. J Am Coll Cardiol HF 2014;2:84.92



Sample Size Calculations

- Monte Carlo simulation performed using background rates and correlations similar to those observed in CUPID 1:
 - 186 recurrent events in 250 patients with a median followup time of 18 months
 - 80% power at the 0.05 two-sided significance level
 - To detect a recurrent event hazard ratio of 0.55 using a joint frailty model


CUPID 2 Study Design

RESULTS

Patient Population Flowchart

Baseline Characteristics

	Placebo	AAV1/SERCA2a
Characteristic	N=122	N=121
Age (years), Mean (SD)	58.4 (12.26)	60.3 (9.77)
Sex, Male, n (%)	98 (80.3)	100 (82.6)
Race, White, n (%)	99 (81.1)	99 (81.8)
CAD, n (%)	67 (54.9)	68 (56.2)
6MWT (m), Mean (SD)	336.6 (71.29)	319.9 (91.47)
LVEF (%), Mean (SD)	24.0 (6.26)	23.0 (6.48)
NYHA Class, n (%) II III IV	21 (17.2) 100 (82.0) 1 (0.8)	22 (18.2) 96 (79.3) 3 (2.5)
KCCQ, Overall Score, Mean (SD)	59.2 (22.27)	58.4 (19.76)
NT-proBNP (pg.mL), Median (IQR)	1504 (849, 3031)	1754 (843.3, 3785)

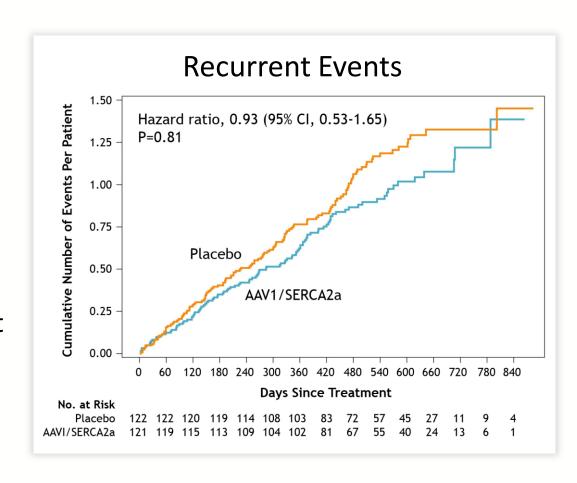
Baseline Characteristics

Characteristic	Placebo N=122	AAV1/SERCA2a N=121
Ischemic	63 (51.6)	62 (51.2)
Non-Ischemic	59 (48.4)	59 (48.8)
HF Optimized Regimen, n (%)		
ACE/ARB	110 (90.2)	111 (91.7)
Aldosterone Antagonist	74 (60.7)	83 (68.6)
Beta Blocker	117 (95.9)	117 (96.7)
Diuretic	109 (89.3)	111 (91.7)
Digoxin	48 (39.3)	45 (37.2)
OAC/NOAC*	81 (66.4)	76 (62.8)
CRT, n (%)	39 (32)	53 (43.8)
ICD, n (%)	89 (73)	98 (81)
Diabetes Type 2, n (%)	49 (40.2)	59 (48.8)

*OAC/NOAC, oral anticoagulants/novel oral anticoagulants

CUPID 2: Primary Efficacy Endpoint Results

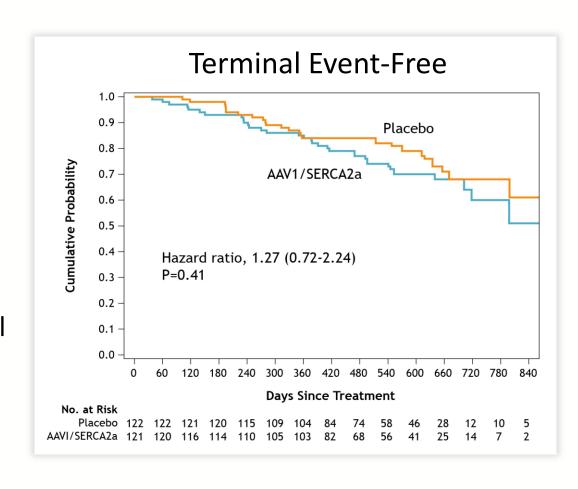
CUPID 2: Primary Efficacy Endpoint Results

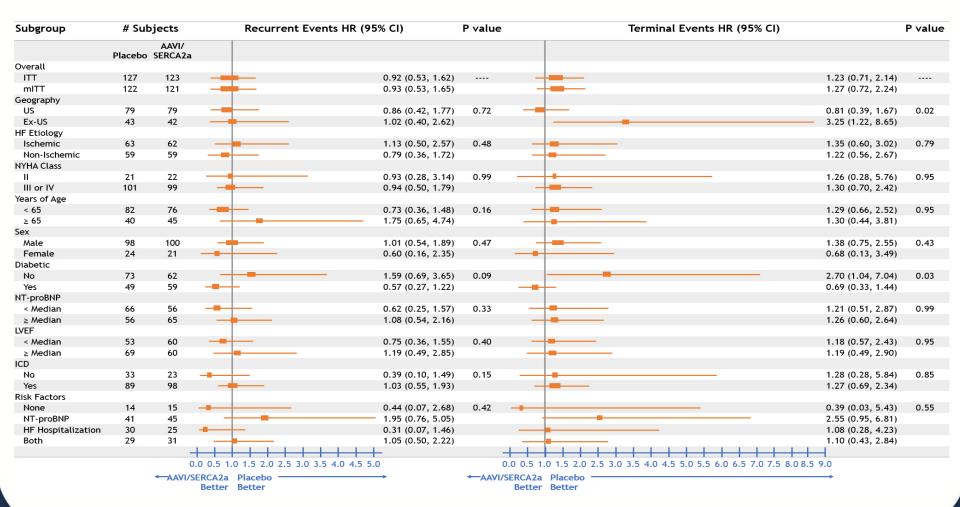

Of the 232 recurrent events that qualified as primary endpoints, 128 were in the placebo group and 104 were in the AAV1/SERCA2a group

Treatment with AAV1/SERCA2a failed to improve the rate of recurrent events (HR, 0.93; 95% confidence interval [CI] 0.53 to 1.65; p=0.81)

CUPID 2: Primary Efficacy Endpoint Results

Of the 232 recurrent events that qualified as primary endpoints, 128 were in the placebo group and 104 were in the AAV1/SERCA2a group


Treatment with AAV1/SERCA2a failed to improve the rate of recurrent events (HR, 0.93; 95% confidence interval [CI] 0.53 to 1.65; p=0.81)

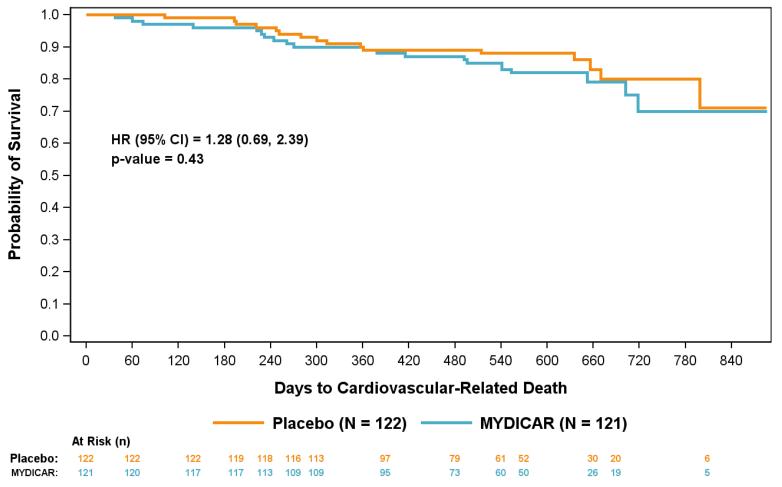

CUPID 2: Secondary Efficacy Endpoint Results

Of the 65 terminal events that qualified as secondary endpoints, 29 were in the placebo group and 36 were in the AAV1/SERCA2a group

Treatment with AAV1/SERCA2a failed to improve time to first terminal event (HR, 1·27; 95% CI 0·72 to 2·24; p=0·40)

Subgroup Analysis for Primary and Secondary Endpoints

Exploratory Efficacy Endpoints


Compared to placebo, treatment with AAV1/SERCA2a had no significant effect on change from baseline in:

- NYHA Functional Class
- Percentage of patients who improved
 NYHA Functional Class
- Distance walked over 6 minutes
- KCCQ overall score
- NT-proBNP levels

SAFETY

CV-Related Death: Safety Population

^{*}Subjects who died from other than cardiovascular-related causes were censored at their death dates.

Adjudicated Clinical Events: Safety Population

Clinical Event	Placebo (N=122) n (Rate)	AAV1/SERCA2a (N=121) n (Rate)
All clinical events	262 (147)	190 (111)
All-cause hospitalizations	240 (135)	172 (100)
HF-related hospitalizations	121 (67.9)	99 (57.7)
Ambulatory WHF	7 (4.0)	8 (4.8)
Non-fatal MI	5 (2.8)	3 (1.7)
Non-fatal stroke	3 (1.7)	5 (2.9)
Heart transplant	4 (2.2)	7 (4.1)
Durable MCSD implant	8 (4.5)	7 (4.1)
Deaths	20 (11.2)	25 (14.6)
Non-cardiovascular	2 (1.1)	3 (1.7)
Cardiovascular	18 (10.1)	22 (12.8)

Note: Rate per 100 patient-years of observation

CUPID 2: Safety

- The only treatment-emergent SAEs occurring in ≥2% of either treatment group was that placebo patients had a higher rate of ICD insertion than AAV1/SERCA2a patients (4.9% versus 0%; p=0.03)
- The only significant change in hematology, blood chemistries, cardiac enzymes, LFTs was a greater number of SERCA2a patients with BUN >ULN at 3 months (without change in creatinine or eGFR)
- No evidence of any cell-mediated immune response; a single positive ELISPOT result in a placebo patient
- No clinically meaningful changes in vital signs, ECG parameters (including QT duration), or arrhythmias on ICD interrogation
- No significant differences between study groups in change in medical therapy during the course of CUPID 2

CUPID 2: Summary

- Treatment of patients with moderate-severe heart failure with AAV1/SERCA2a did not significantly reduce the likelihood of either recurrent hospitalizations (primary end-point) or terminal events (secondary end-point)
- There was no evidence of improvement for these endpoints in any predefined or exploratory subgroup
- There were no beneficial effects on exploratory efficacy endpoints
- No safety concerns emerged

CUPID 2: Conclusions

CUPID 2 failed to support the hypothesis that AAV1/SERCA2a at the dose used has clinical benefits in patients with moderate to severe heart failure and reduced ejection fraction

What Can We Learn From the Results of CUPID 2

- Exploring questions regarding outcomes:
 - Did it turn out to be the wrong target patient population? Was the study design optimal?
 Were the end-points appropriate?
 - Was it the target (i.e., can we conclude that correction of SERCA2a by gene therapy doesn't improve heart failure outcomes)?
 - Was there adequate drug delivery to the cardiac myocytes? (a complex challenge with gene therapy)