Cardiac stem cells development, disease and repair

What kind of stem cells can be identified?

adult or somatic stem cells

- Present in all tissues and organs (adult or fetal) with the capacity to repair after injury
- Differentiation capacity (uni- or multipotent) and number of cells are limited
- Not ethically sensitive since autologous cells (from the patient) can be transplanted.
- Endogenous activation/differentiation may be possible

embryonic stem cells

- Derived from blastocyst-stage embryo's (in human:1998)
- Pluripotent
- Ethically sensitive, but many cell(s) lines available and can differentiate to all cells of the human body

Induced pluripotent stem cells

- Derived from reprogrammed somatic cells (in human:2007)
- Pluripotent (similar to ESCs)
- Not ethically sensitive, since cells can be derived from adults (patients). Could be used for autologous transplantation

Stem cells for cardiac repair

- Loss of cardiomyocytes in cardiovascular diseases (myocardial infarction)
- Intrinsic myocardial regeneration is limited

Bone marrow cells (c-kit+, Lin-) for cardiac repair

Bone marrow cells and myocardial regeneration. a, Myocardial infarct (MI) injected with Lin- c-kitPOS cells from bone marrow (arrows). Arrowheads indicate regenerating myocardium; VM, viable myocardium

Red, cardiac myosin; green, propidium iodide labelling of nuclei. Orlic et al Nature. 2001;410:701.

Adult stem cells for cardiac repair

- Clinical trials with bone marrow cells with limited success
 - Slight improvement of heart function
 - No cardiac regeneration
- Mesenchymal stem cells (MSCs)
 - Stromal cells obtained from the bone marrow, but also from many other tissues
 - Adipose tissue, umbilical cord blood, placenta, pericvascular tissues, etc.
 - Self-renewal capacity
 - Multipotent differentiation capacity
 - chondrocytes, osteoblasts, adipocytes, cardiomyocytes)
- Role of MSCs in cardiac repair
 - Improved heart function
 - Migration to injury site
 - Immunosuppressive properties
 - Increased vascularization
 - Release of growth factors (VEGF, IGF-1)
 - Cardiac differentiation from MSCs is limited

cardiac stem cells

Clusters of primitive and early committed cells could be found in the heart

Beltrami et al. Cell. 2003;114:763

Small cluster of c-kit+ cells (green) positive for Nkx2.5 (white)

Lin⁻ c-kit⁺ CSCs injected into an ischemic heart resulted in the formation of blood-carrying new vessels and myocytes

Markers identifying cardiac stem cells:

- C-kit+
- Sca-1+
- Isl-1+
- Flk-1+
- SP+

Cardiospheres of culture explants of human heart biopsies represent a potential source of endogenous cardiac stem cells

Clnical trial in MI patients (CADUCEUS)

Epicardial cells (WT1+/TBX18+) represent another cell population that may contribute to endogenous repair under the right conditions (Smart et al Nature 2011)

Enhanced regeneration in the presence of Thymosin Beta 4

Human Pluripotent Stem Cells

generation of cardiac progenitor cells and cardiomyocytes

embryonic stem cells

Culturing human embryonic stem cells

hESC on mouse feeders, ready to passage

hESC, 1 day after transfer

hESC-END-2 co-culture improving cardiomycocyte differentiation

cardiomyocyte differentiation efficiency

hESC differentiating to cardiomyocytes

hESC-END2 coculture

Differentiating hESC-CM follow "waves" of expression comparable to in vivo cardiac development!

Cardiac proteins in hESC, human fetal and adult cardiomyocytes (CM)

Electrophysiological characterization of hESC-CM

Ventri On-average >85% of cardiomyocytes show a ventricular-like action potential

like cell (hES)

- 40 mV

Ventricular cell 0 mV (fetal16 weeks)

- 40 mV

Human pluripotent stem cell-derived cardiomyocytes

cell transplantation for cardiac repair?

Effect on cardiac function?

Model of acute myocardial infarction Male SCID mice (n=13-15 per group)

- MI (LAD ligation) +
 - 1 million GFP-HES3 from beating areas END-2 co-culture (20% CM)
 - 1 million non-CM differentiated from GFP-HES3
- MRI (9.4 T) after 2 days, 4 weeks, 12 weeks

Cardiac function improvement at 4 weeks not sustained!

Why do we need human stem cell-derived cardiomyocytes?

Higher predictabillity and succes can be achieved with more homogeneous cardiac subtype populations or controlled mixtures of cells

Identification of cardiac subtype populations

Reporter lines for cardiac conduction system

Building a cardiac reporter line

EGFP expression by the endogenous NKX2-5 promoter

Homologous recombination following electroporation in hESC

Beating differentiating hESC

Controlled differentiation

cardiac cell differentiation and purification

Generation of a cardiac mesodermal hESC line

Generated in Nkx2.5-GFP background: double transgenic hESC line (Mesp1-mCherry/Nkx2.5-GFP)

MESP1 reporter hESC line

Mesp1-mCherry/Nkx2.5-GFP reporter hESC-line

RT-PCR

FACS

B3 B3 B3 B3 B3 B3 B3 D0 D1 D2 D3 D4 D5 D6

Mesp1

Mesp1-mCherry expressing Cells at Day 3 of Differentiation

How do we get cardiac subtype populations? (atrial, ventricular, pacemaker cells)

Heart development at a glance

Retinoic acid in heart development

Keegan et al. Science 2005

Gassanov et al. Differentiation 2008: RA induces atrial differentiation in mES

Expression of RALDH2 in differentiating hESC-CM

Retinoic acid treatment: shift from ventricular to atrial cells

ventricular genes

atrial genes

ION CURRENTS CONTRIBUTING TO ATRIAL & VENTRICULAR ACTION POTENTIALS

Supported by Zhang et al. Cell Research 2011: RA signalling affects differentiation of atrial and ventricular cells

Action potential properties of RA treated cardiomyocytes

Conclusions

- Mesenchymal stem cells and cardiac stem cells are promising cell sources for the treatment of cardiac disease.
 - Transplantation, tissue engineering, endogenous activation
- Human pluripotent stem cells for transplantation: tissue engineering using mixtures of cardiac cells from defined differentiation cultures will be the next step
- Genetic cardiac reporter lines faithfully recapitulate the "in vivo" lineage
 - Molecular mechanisms for expansion and differentiation can be studied
- Refined protocols enable cardiac subtype specification (retionic acid → atrial CMs)
 - Advantageous for tissue engineering, drug screening, disease modeling

Acknowledgements

Harsha Deepti Devalla
Marcelo Ribeiro
Sabine Den Hartogh
Verena Rönz
Jantine Monshouwer
Chantal Schreurs
Marie-Christine Weller
Yann Decker
Juan Antonio Guadix

Christine Mummery

Richard Davis Dorien Ward

David Elliot Andrew Elefanty Ed Stanley

Arie Verkerk