CT or PET/CT for coronary artery disease

Rotterdam 2012

Juhani Knuuti, MD, PhD, FESC
Turku PET Centre
University of Turku
Turku, Finland
Juhani.knuuti@utu.fi

Disclosure: Juhani Knuuti, M.D.

Juhani Knuuti, M.D. has financial interests to disclose. Potential conflicts of interest have been resolved.

Research Support / Grants None

Stock/Equity (any amount) None

Consulting Lantheus

Employment None None

Speakers Bureau / Honoraria Philips

Research contracts (institutional): Orion Pharma, Turku Imanet Ltd, GE Healthcare, GSK, Merck, Bayer-Schering, Novartis, Lundbeck, Roche; Lantheus

Imaging and CAD Current main trends

- From ischemic cascade to CAD cascade
- From diagnosis of CAD to guidance of therapy
- Novel imaging applications
 - Quantification
 - Imaging of vulnerable plaque

Paradigm shift 1: From ischemic to CAD cascade

Multislice CT vs. Myocardial Perfusion

Regional comparison in 140 patients

Data from Schuijf et al. 2006, Di Carli et al. 2006, Hacker et al. 2005, and Rispler et al. 2006

MDCT findings in patients with normal SPECT perfusion imaging result

Werkhoven JM, et al Am J Cardiol. 2008 Jan 1;101(1):40-5.

CT angiography

Curved MPR reconstructions of the major coronary vessels

CT Acquisition:

Premedication: Metoprolol 10 mg i.v. HR

Acquisition: Prospective step-and-shoot

protocol, mA 650, 120 kV

Contrast: lomeron 400mg/ml 68 ml

Radiation dose 7.4 mSV

PET perfusion imaging during stress

Displayed as fused volume rendered images scaled to absolute scale 0-3.5 ml/g/min Normal perfusion: above 2.5 ml/g/min: yellow or red

PET Acquisition:

Injected Dose: 1100 MBq O-15-water

Stress: Adenosine 140 µg/min/kg for 6.5 min

Acquisition time: dynamic 4.5 min

Radiation dose 0.9 mSV

Case:LP

Invasive angiography + FFR

FFR = Fractional flow reserve – invasive measurement of the stenosis functional gradient during adenosine infusion

Prognostic Value of Myocardial Perfusion SPECT

n = 12 000 pts

Iskander 5 et al. JACC 1998;32:57

Additional prognostic value of CT and perfusion imaging

Imaging and CAD Current main trends

- From ischemic cascade to CAD cascade
- From diagnosis of CAD to guidance of therapy
- Novel imaging applications
 - Quantification
 - Imaging of vulnerable plaque

Paradigm shift 2: From diagnosis to guidance of therapy

Anatomy (Obstructive CAD)

Flow-Limiting (Perfusion, FFR)

Optimal Medical Treatment

Complete Functional Revascularization and optimal medical treatment

Noninvasive function: Perfusion, WMA Invasive function: FFR

Hachamovitch Circulation 2003;107:2900

COURAGE NEJM 2007;356:1503

COURAGE Circulation 2008;117:1283

DEFER JACC 2007;49:2105

FAME NEJM 2009;360:213

FAME JACC 2010;56:177

Functional consequences of stenoses

Invasive Anatomy vs. Functional Consequences

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 15, 2009

VOL. 360 NO. 3

Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention

Tonino et al. FAME

Days since Randomization

CT angiography

Curved MPR reconstructions of the major coronary vessels

CT Acquisition:

Premedication: Metoprolol 10 mg i.v. HR

Acquisition: Prospective step-and-shoot

protocol, mA 650, 120 kV

Contrast: lomeron 400mg/ml 68 ml

Radiation dose 7.4 mSV

PET perfusion imaging during stress

Displayed as fused volume rendered images scaled to absolute scale 0-3.5 ml/g/min Normal perfusion: above 2.5 ml/g/min: yellow or red

PET Acquisition:

Injected Dose: 1100 MBq O-15-water

Stress: Adenosine 140 µg/min/kg for 6.5 min

Acquisition time: dynamic 4.5 min

Radiation dose 0.9 mSV

Case:LP

Multivessel disease: What is the culprit lesion?

Multivessel disease: What is the culprit lesion?

Case: stenoses in all major vessels; RCA is culprit

Microvascular disease

Absolute perfusion decreased but no epicardial disease

Relative perfusion

Absolute perfusion

Hybrid noninvasive (PET/CT) vs. Hybrid invasive (ICA + FFR)

Kajander et al Circulation 2010

Challenges and solutions of perfusion imaging

Challenge	Solution
LM disease	?
Balanced 3 vessel disease	?
Multivessel disease	?
Anatomical location	?
Non-ischemic CAD	?
 Microvascular disease 	?

Challenges and solutions of ischemia imaging

Challenge

LM disease

- Balanced 3 vessel disease
- Multivessel disease
- Anatomical location
- Non-ischemic CAD
- Microvascular disease

Solution

Hybrid

Hybrid

Hybrid

/

Hybrid

Impact of hybrid imaging on downstream resource utilization

Imaging and CAD Current main trends

- From ischemic cascade to CAD cascade
- From diagnosis of CAD to guidance of therapy
- Novel imaging applications
 - Quantification
 - Imaging of vulnerable plaque

Challenges and solutions of CAD/ishchemia imaging

Challenge

- LM disease
- Balanced 3 vessel disease
- Multivessel disease
- Anatomical location
- Non-ischemic CAD
- Microvascular disease

Solution

Hybrid

Quantification

Quantification

Hybrid

Hybrid

Quantification/

Hybrid

Quantification of myocardial perfusion

Which patients will benefit?

- Balanced 3 vessel or multivessel disease
- Culprit lesion vs. non-culprit lesion in multi vessel disease
- Early changes in coronary dysfunction

Absolute flow vs Relative flow

Kajander et al Circ Cardiovasc Imaging. 2011

Absolute flow is as good as flow reserve!

Joutsiniemi et al (Circ Imaging)

Imaging and CAD Current main trends

- From ischemic cascade to CAD cascade
- From diagnosis of CAD to guidance of therapy
- Novel imaging applications
 - Quantification
 - Imaging of vulnerable plaque

MDCT Characterization of Coronary Plaques

Plaque characterization using CT vs. Myocardial Perfusion SPECT

MDCT Characterization of Coronary Plaques - Prognosis

Large low attenuation plaque area Positive remodeling Spotty calcification

15 ACS in 1059 patients

Motoyama J Am Coll Cardiol 2009

Dual gated ¹⁸F-FDG PET/CT of coronary arteries in ACS patients

Myocardial FDG uptake supressed by low carbohydrate, high fat diet

Lankinen at al ICNC 2011

Dual gated ¹⁸F-FDG PET/CT of coronary arteries in ACS patients

- 39 year old man
- Risk factors of CAD:
 - Smoking
 - Family history +
- 5 days of UAP
- ECG: lateral T-inversion
- TNT +
- LCX subtotal occlusion stented

Turku PET Centre, Finland

Dual gated ¹⁸F-FDG PET/CT of coronary arteries in ACS patients

- 20 ACS (non-STEMI or UAP) patients
- Dual-gated ¹⁸F FDG PET/CT (3d after onset of symptoms)
- High-fat diet intervention to suppress myocardial uptake (Williams AJR 2008)
- Visual coronary FDG uptake in 80% of patients (3 prior to intervention)
- TBR 3.2±1.3 (range 1.8-5.4)

Lankinen EHJ 2011 (abstract)

Concerns on sequential / hybrid imaging for CAD

- Complicated for patients (sequential)
- Logistic challenges (hybrid)
- Higher work load
- Non-standardized image analysis
- Radiation burden
- Lacking evidence and indications
- Costs and cost-effectivenes

Since upper limit of lifetime risk of any imaging test was 23 per 10 000 only 2.3% of the events need to be prevented to completely cancel the risk of imaging.

