In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.
Did you know that your browser is out of date? To get the best experience using our website we recommend that you upgrade to a newer version. Learn more.

We use cookies to optimise the design of this website and make continuous improvement. By continuing your visit, you consent to the use of cookies. Learn more

A young man with persistent Troponin release and Ventricular Arrhythmia

Case presented by Working Group on Myocardial and Pericardial Diseases

Presented by: Alida LP Caforio, MD, PhD (1), Cristina Basso, MD,PhD(2), Loira Leoni, MD, PhD (1), and Renzo Marcolongo, MD(3)

(1) Cardiology, and (2) Cardiovascular Pathology, Department of Cardiological, Thoracic, and Vascular Sciences, (3) Haematology and Clinical Immunology, Department of Medicine,University of Padova, Padova, Italy

The case

Case presentation

A 37 year old male, who practiced agonist sport activity (cycling, soccer), with negative family and personal history for heart disease underwent cardiological consultation as outpatient because of prolonged palpitation unrelated to effort. Standard 12 lead ECG was within normal limits. 24 h ECG Holter monitoring showed: sinus rhythm, 4771 polymorphic ventricular ectopic beats (VEBs), 887 in couples, 86 non sustained ventricular tachycardia (NSVT) runs (longest 5 beats, max 120 bpm), sinus rhythm, mean heart rate 72 (range 43-143). He underwent standard 2D echocardiography (2D-Echo) which was within normal limits. The cardiologist diagnosed arrhythmia in a normal heart, prescribed propafenone 150 mg tid and advised to reduce sport activity. After 9 months, the patient experienced prolonged palpitation and prolonged epigastric pain, increased with respiratory acts, after a training session and was admitted to the local hospital. He had a normal ECG, but abnormal Troponin I (TnI) levels, normal biventricular function on 2D Echo, sporadic frequent VEBs on telemetric monitoring, stable increase in TnI (2-3 microg/L, normal range 0,00-0,045, flat curve, normal CK-MB, normal Reactive C Protein). Coronary angiography was performed and revealed normal coronary arteries. He refused to undergo cardiovascular magnetic resonance imaging (CMRI) because of claustrophobia. He was put on atenolol 100 mg o.d. and discharged. Six months later he was referred to our institution as outpatient, still complaining of palpitation and chest pain. High sensitivity TnI was 4,214 microg/L (normal 0,00-0,045) and had tested positive on repeated occasions in the previous months. Standard ECG was within normal limits. 24 ECG Holter monitoring showed: sinus rhythm, mean HR 69 (46-103), 4345 VEBs, 711 couplets, 150 NSVT runs (longest 3 beats). 2D-echocardiography was normal, left ventricular ejection fraction (LVEF) was 67%. He had high titre serum antinuclear autoantibody (ANA) (1/5000), and was anti-heart autoantibody (AHA), and anti-intercalated disk autoantibody (AIDA) positive.


1) Can we make the final diagnosis based on the above cited results and what are the possible etiologies of this non-ischemic persistent troponin release and ventricular arrhythmia?

2) If not, which additional examination would you recommend?

3) Would you recommend an implantable defibrillator (ICD) for primary prevention?

4) Would you prescribe non steroidal anti-inflammatory drugs (NSAIDs) and colchicine?

Solution of the previous case of the month: OUT OF PLACE: AN UNEXPECTED CAUSE OF HEART FAILURE

Presented by:  Fernando Dominguez, MD; Pablo Garcia-Pavia, MD, PhD

Heart Failure and Inherited Cardiac Diseases Unit.
Hospital Universitario Puerta de Hierro, Madrid, Spain.

What are the most common aetiologies for this entity?

The patient presents a type of restrictive cardiomyopathy characterized by extensive fibrosis of the endocardium. These findings can be observed in two diseases: late-stage Löffler endocarditis (LE) and endomyocardial fibrosis (EMF). The former is seen in association with eosinophilic states such as hypereosinophilic syndrome, eosinophilic leukaemia, lymphomas, drug hypersensitivity or parasites. As the eosinophil count was normal in our patient, this would be extremely rare and only possible in a late fibrotic phase. This LE phase is preceded by other two. The first is characterized by intense myocarditis and necrosis with high peripheral eosinophil counts of more than 1500 per mm3. Patients usually present with weight loss, fever and cough as well as heart failure, but in this case the patient did not present such an aggressive course before fibrosis was established. After several months, this necrotic phase is followed by a thrombotic stage where the inflamed myocardium is replaced by thrombotic material (1,2). In our case the thrombus was evidenced when fibrosis was already present, so this previous phase cannot be confirmed. An endomyocardial biopsy in this setting would be especially useful in the early phases, as eosinophils are a target for specific treatments such as corticosteroids (3). However, during the late fibrotic stage the EMB would only show scar tissue.

Regarding endomyocardial fibrosis (EMF), it is usually found in tropical and subtropical regions, mainly in Africa (4). Contrary to what happens in LE, eosinophilia is not always present and it usually appears when there is a concomitant parasitic infection. Aside from infections, other possible causes include genetic factors, anti-myosin antibodies or exposure to high levels of cerium, which is very common in the typical diet of the aforementioned regions. The clinical manifestations are not as aggressive as in LE, so clinical worsening develops in a more progressive manner. Fibrosis can affect right, left or both ventricles, and the echocardiogram usually show a restrictive filling pattern, as well as obliterated LV or RV apex and a bright appearance of the endocardium. EMB confirms the diagnosis but due to the irreversible nature of fibrotic tissue, it does not enable to initiate a tailored treatment (5).

Finally, another less common endomyocardial disease would be endocardial fibroelastosis, but this rare condition is usually diagnosed in early childhood and can be associated with other congenital heart diseases (6).

The diagnosis in this case was difficult to establish, but the clinical picture resembled that of EMF, even though it appeared outside tropical or subtropical regions. This is an extremely rare condition that has been only anecdotally reported in literature (7).

Should an endomyocardial biopsy be performed in this case?

A right ventricle EMB was performed in this patient, but due to the patchy nature of the disease and taking into account that fibrosis was predominantly seen in the LV, there was no fibrotic tissue in the available samples. The only findings were interstitial inflammation without eosinophils and an isolated hemangioma (Figure 7). Therefore, EMB did not confirm the diagnosis and it did not led to changes in the treatment. In a different case scenario such as peripheral eosinophilia, EMB would have been very useful in order to start effective therapy if a LE was diagnosed, but in this case it was not strictly necessary to perform an EMB.

Figure 7. Endocardium histology. Hematoxilin & eosin staining. Mild intersticial inflammation without eosinophils and central isolated hemangioma.

Once the cardiac transplant was performed, the explanted heart was analysed and showed a mildly hypertrophied left ventricle with a global wall thickness of 13 mm. The entire left ventricular endocardium was covered by a 3 mm-thick white fibrous layer (Figure 8, black arrows). The right ventricle also presented a fibrous layer in the apex, but it was normal in size and wall thickness was preserved.

The myocardium showed no scars and the coronary arteries were normal.

Figure 8. Explanted heart. Endomyocardial fibrosis in the left ventricle (black arrows)



A young man with persistent troponin release and ventricular arrhythmia

  1. Virus serology in patients with suspected myocarditis: utility or futility? Mahfoud F, Gärtner B, Kindermann M, Ukena C, Gadomski K, Klingel K, Kandolf R, Böhm M, Kindermann I. Eur Heart J. 2011 Apr;32(7):897-903.
  2. Predictors of outcome in patients with suspected myocarditis. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M. Circulation 2008;118:63–648.
  3. Leone O, Veinot JP, Angelini A, Baandrup UT, Basso C, Berry G, Bruneval P, Burke M, Butany J, Calabrese F, d'Amati G, Edwards WD, Fallon JT, Fishbein MC, Gallagher PJ, Halushka MK, McManus B, Pucci A, Rodriguez ER, Saffitz JE, Sheppard MN, Steenbergen C, Stone JR, Tan C, Thiene G, van der Wal AC, Winters GL. 2011 consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol. 2012 Jul-Aug;21(4):245-74.
  4. CMR sensitivity varies with clinical presentation and extent of cell necrosis in biopsy-proven acute myocarditis. Francone M, Chimenti C, Galea N, Scopelliti F, Verardo R, Galea R, Carbone I, Catalano C, Fedele F, Frustaci A. JACC Cardiovasc Imaging. 2014 Mar;7(3):254-63.
  5. Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Baccouche H, Mahrholdt H, Meinhardt G, Merher R, Voehringer M, Hill S, Klingel K, Kandolf R, Sechtem U, Yilmaz A. Eur Heart J. 2009 Dec;30(23):2869-79.
  6. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Caforio AL, Calabrese F, Angelini A, Tona F, Vinci A, Bottaro S, Ramondo A, Carturan E, Iliceto S, Thiene G, Daliento L. Eur Heart J. 2007 Jun;28(11):1326-33.
  7. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, Levine GN, Narula J, Starling RC, Towbin J, Virmani R; American Heart Association; American College of Cardiology; European Society of Cardiology; Heart Failure Society of America; Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007 Nov 6;50(19):1914-31.
  8. Current state of knowledge on aetiology, diagnosis, management and therapy of myocarditis. A Position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Caforio ALP, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, Heymans S, Jahns R, Klingel K, Linhart A, Maisch B, McKenna W J, Mogensen J, Pinto Y, Ristic A, Schultheiss HP, Hubert SeggewissH, TavazziL, Thiene G, Yilmaz A, Charron P, ElliottPM. Eur Heart J 2013;34:2636–2648.
  9. Clinical presentation and diagnosis of myocarditis. Caforio AL, Marcolongo R, Basso C, Iliceto S. Heart. 2015 Aug;101(16):1332-44
  10. Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management. Caforio ALP,Marcolongo R, Jahns R, Fu M, Felix SB, Iliceto S. Heart Fail Rev 2013 Nov;18(6):715-32.
  11. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Authors/Task Force Members, Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekvål TM, Spaulding C, Van Veldhuisen DJ. Eur Heart J. 2015 Aug 29. pii: ehv316. [Epub ahead of print]


  1. Gotlib J. WorldHealthOrganization-defined eosinophilic disorders: 2011 updateon diagnosis, riskstratification, and management. Am J Hematol. 2011 Aug. 86(8):677-88.
  2. Loeffler W. Endocarditis parietalisfibroplasticamitBlut-eosinophilie, eineigenartigesKrankheitshild. Schweiz Med Wochenschr;. 1936. 66:817-820
  3. Kim CH, Vlietstra RE, Edwards WD, Reeder GS, Gleich GJ. Steroid-responsive eosinophilic myocarditis: diagnosis by endomyocardial biopsy. The American journal of cardiology. 1984;53: 1472-3.
  4. Mocumbi AO, Falase AO. Recentadvances in theepidemiology, diagnosis and treatment of endomyocardial fibrosis in africa. Heart. 2013;99:1481-1487
  5. Chopra P, Narula J, Talwar KK, Kumar V, Bhatia ML. Histomorphologiccharacteristics of endomyocardial fibrosis: an endomyocardial biopsy study. Human pathology. 1990; 21:613-6.
  6. Seki A, Patel S, Ashraf S, Perens G, Fishbein MC. Primary endocardial fibroelastosis: anunderappreciated cause of cardiomyopathy in children. CardiovascPathol. 2013;22:345-50
  7. Hassan WM, Fawzi ME, Helaly SA, Hegazy H, Malik S. Pitfalls in diagnosis and clinical echocardiographic, and hemodynamic findings in endomyocardial fibrosis: a 25-year experience. Chest. 2005;128: 3985–92.
The content of this article reflects the personal opinion of the author/s and is not necessarily the official position of the European Society of Cardiology.